File size: 7,677 Bytes
b3b8331 fc67519 f032afa 73b559a 31a9872 73b559a b3b8331 c627b59 b3b8331 99c48ed b3b8331 c627b59 b3b8331 67037c0 bae53d6 9e95735 b3b8331 3aaa4ea 99c48ed b3b8331 c627b59 b3b8331 9e95735 bae53d6 67037c0 b3b8331 9e95735 b3b8331 fc67519 f032afa fc67519 f032afa d3d570d efb07c2 f032afa fc67519 b3b8331 9e95735 73b559a 9e95735 b3b8331 9e95735 b3b8331 9e95735 b3b8331 9e95735 b3b8331 9e95735 b3b8331 389d4d9 9407769 9e95735 b3b8331 9e95735 73b559a 9e99cb0 9e95735 fc67519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import streamlit as st
from PIL import Image
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
from pathlib import Path
def clear_text():
st.session_state.text = st.session_state.widget
st.session_state.widget = ""
def get_result_text_es_pt (list_entity, text, lang):
result_words = []
tmp_word = ""
if lang == "es":
punc_tags = ['¿', '?', '¡', '!', ',', '.', ':']
else:
punc_tags = ['?', '!', ',', '.', ':']
for idx, entity in enumerate(list_entity):
tag = entity["entity"]
word = entity["word"]
start = entity["start"]
end = entity["end"]
# check punctuation
punc_in = next((p for p in punc_tags if p in tag), "")
subword = False
# check subwords
if word[0] == "#":
subword = True
if tmp_word == "":
p_s = list_entity[idx-1]["start"]
p_e = list_entity[idx-1]["end"]
tmp_word = text[p_s:p_e] + text[start:end]
else:
tmp_word = tmp_word + text[start:end]
word = tmp_word
else:
tmp_word = ""
word = text[start:end]
if tag == "l":
word = word
elif tag == "u":
word = word.capitalize()
# case with punctuation
else:
if tag[-1] == "l":
word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
elif tag[-1] == "u":
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
if tag != "l":
word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
if subword == True:
result_words[-1] = word
else:
result_words.append(word)
return " ".join(result_words)
def get_result_text_ca (list_entity, text):
result_words = []
punc_tags = ['?', '!', ',', '.', ':']
tmp_word = ""
for idx, entity in enumerate(list_entity):
start = entity["start"]
end = entity["end"]
tag = entity["entity"]
word = entity["word"]
# check punctuation
punc_in = next((p for p in punc_tags if p in tag), "")
subword = False
# check subwords
if word[0] != "Ġ":
subword = True
if tmp_word == "":
p_s = list_entity[idx-1]["start"]
p_e = list_entity[idx-1]["end"]
tmp_word = text[p_s:p_e] + text[start:end]
else:
tmp_word = tmp_word + text[start:end]
word = tmp_word
else:
tmp_word = ""
word = text[start:end]
if tag == "l":
word = word
elif tag == "u":
word = word.capitalize()
# case with punctuation
else:
if tag[-1] == "l":
word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
elif tag[-1] == "u":
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
if tag != "l":
word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
if subword == True:
result_words[-1] = word
else:
result_words.append(word)
return " ".join(result_words)
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="inset",
border_width=px(2)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style, unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
logo_path = Path(__file__).with_name("vocali_logo.jpg").relative_to(Path.cwd())
funding_path = Path(__file__).with_name("logo_funding.png").relative_to(Path.cwd())
myargs = [
"Made in ",
image(str(logo_path), width=px(50), height=px(50)),
link("https://vocali.net/", "VÓCALI"),
"with funding ",
image(str(funding_path), height=px(50), width=px(200)),
br(),
"This work was funded by the Spanish Government, the Spanish Ministry of Economy and Digital Transformation through the Digital Transformation through the 'Recovery, Transformation and Resilience Plan' and also funded by the European Union NextGenerationEU/PRTR through the research project 2021/C005/0015007",
]
layout(*myargs)
if __name__ == "__main__":
if "text" not in st.session_state:
st.session_state.text = ""
st.title('Sanivert Punctuation And Capitalization Restoration')
model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es)
model_ca = AutoModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
pipe_pt = pipeline("token-classification", model=model_pt, tokenizer=tokenizer_pt)
input_text = st.selectbox(
label = "Choose an language",
options = ["Spanish", "Portuguese", "Catalan"]
)
st.subheader("Enter the text to be analyzed.")
st.text_input('Enter text', key='widget', on_change=clear_text) #text is stored in this variable
text = st.session_state.text
print(text)
if input_text == "Spanish":
result_pipe = pipe_es(text)
out = get_result_text_es_pt(result_pipe, text, "es")
elif input_text == "Portuguese":
result_pipe = pipe_pt(text)
out = get_result_text_es_pt(result_pipe, text, "pt")
elif input_text == "Catalan":
result_pipe = pipe_ca(text)
out = get_result_text_ca(result_pipe, text)
st.markdown(out, unsafe_allow_html=True)
footer() |