File size: 12,330 Bytes
1a688bc
4d6f2bc
7736f5f
48c31e7
4d6f2bc
 
 
48c31e7
5c4e8c1
4d6f2bc
 
b7fd57e
4d6f2bc
48c31e7
dffd0bb
48c31e7
4d6f2bc
 
 
 
 
 
 
 
 
 
48c31e7
 
 
 
4d6f2bc
dffd0bb
 
 
 
1128e78
 
 
 
 
48c31e7
 
 
 
 
 
 
1128e78
1a688bc
 
 
4d6f2bc
dffd0bb
 
4d6f2bc
 
 
 
 
 
 
 
1128e78
4d6f2bc
 
b7fd57e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c31e7
b7fd57e
 
 
 
 
 
48c31e7
b7fd57e
 
48c31e7
 
 
 
b7fd57e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c31e7
b7fd57e
4d6f2bc
 
1128e78
4d6f2bc
 
 
 
 
 
 
 
 
 
 
 
1128e78
48c31e7
 
 
4d6f2bc
 
4c2b2fd
4d6f2bc
 
1128e78
48c31e7
4d6f2bc
 
 
48c31e7
 
4d6f2bc
 
1128e78
 
 
 
 
 
 
 
 
4d6f2bc
1128e78
 
48c31e7
 
1128e78
48c31e7
1128e78
48c31e7
b7fd57e
 
 
1128e78
 
 
 
 
 
 
 
 
 
 
 
 
 
48c31e7
1128e78
b7fd57e
 
 
48c31e7
 
 
 
1128e78
4d6f2bc
 
b7fd57e
48c31e7
b7fd57e
 
 
 
 
 
 
4d6f2bc
 
 
 
48c31e7
4d6f2bc
 
48c31e7
4d6f2bc
 
 
 
 
 
48c31e7
4d6f2bc
 
 
 
 
 
1a688bc
 
 
 
 
 
 
 
 
 
 
 
 
dffd0bb
 
4d6f2bc
 
 
1a688bc
4d6f2bc
1a688bc
 
48c31e7
 
1128e78
1a688bc
4d6f2bc
1a688bc
48c31e7
 
 
4d6f2bc
b7fd57e
48c31e7
b7fd57e
5c4e8c1
 
4d6f2bc
1128e78
5c4e8c1
1128e78
1a688bc
 
 
48c31e7
 
 
 
 
 
 
 
 
 
 
 
4d6f2bc
 
7736f5f
4d6f2bc
b7fd57e
4d6f2bc
 
 
48c31e7
 
 
 
4d6f2bc
48c31e7
1128e78
4d6f2bc
 
 
48c31e7
dffd0bb
 
1a688bc
 
dffd0bb
 
4d6f2bc
 
48c31e7
1128e78
 
dffd0bb
 
 
 
1a688bc
 
dffd0bb
 
 
 
 
4d6f2bc
b7fd57e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c31e7
 
4d6f2bc
 
 
 
1128e78
 
 
 
7736f5f
 
5c4e8c1
 
4d6f2bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import json
import re
import time
from contextlib import contextmanager
from datetime import datetime
from itertools import product
from os import environ
from types import MethodType
from typing import Callable

import spaces
import tomesd
import torch
from compel import Compel, DiffusersTextualInversionManager, ReturnedEmbeddingsType
from compel.prompt_parser import PromptParser
from DeepCache import DeepCacheSDHelper
from diffusers import (
    DEISMultistepScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
)
from diffusers.models import AutoencoderKL, AutoencoderTiny
from tgate.SD import tgate as tgate_sd
from tgate.SD_DeepCache import tgate as tgate_sd_deepcache
from torch._dynamo import OptimizedModule

# some models use the deprecated CLIPFeatureExtractor class (should use CLIPImageProcessor)
__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="transformers")
__import__("transformers").logging.set_verbosity_error()

ZERO_GPU = (
    environ.get("SPACES_ZERO_GPU", "").lower() == "true"
    or environ.get("SPACES_ZERO_GPU", "") == "1"
)

EMBEDDINGS = {
    "./embeddings/bad_prompt_version2.pt": "<bad_prompt>",
    "./embeddings/BadDream.pt": "<bad_dream>",
    "./embeddings/FastNegativeV2.pt": "<fast_negative>",
    "./embeddings/negative_hand.pt": "<negative_hand>",
    "./embeddings/UnrealisticDream.pt": "<unrealistic_dream>",
}

with open("./styles/twri.json") as f:
    styles = json.load(f)


# inspired by ComfyUI
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py
class Loader:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(Loader, cls).__new__(cls)
            cls._instance.cpu = torch.device("cpu")
            cls._instance.gpu = torch.device("cuda")
            cls._instance.pipe = None
        return cls._instance

    def _load_deepcache(self, interval=1):
        has_deepcache = hasattr(self.pipe, "deepcache")

        if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
            return self.pipe.deepcache
        if has_deepcache:
            self.pipe.deepcache.disable()
        else:
            self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)

        self.pipe.deepcache.set_params(cache_interval=interval)
        self.pipe.deepcache.enable()
        return self.pipe.deepcache

    def _load_tgate(self):
        has_tgate = hasattr(self.pipe, "tgate")
        has_deepcache = hasattr(self.pipe, "deepcache")

        if not has_tgate:
            self.pipe.tgate = MethodType(
                tgate_sd_deepcache if has_deepcache else tgate_sd,
                self.pipe,
            )
        return self.pipe.tgate

    def _load_vae(self, model_name=None, taesd=False, dtype=None):
        vae_type = type(self.pipe.vae)
        is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
        is_tiny = issubclass(vae_type, AutoencoderTiny)

        # by default all models use KL
        if is_kl and taesd:
            # can't compile tiny VAE
            print("Switching to Tiny VAE...")
            self.pipe.vae = AutoencoderTiny.from_pretrained(
                pretrained_model_name_or_path="madebyollin/taesd",
                use_safetensors=True,
                torch_dtype=dtype,
            ).to(self.gpu)
            return self.pipe.vae

        if is_tiny and not taesd:
            print("Switching to KL VAE...")
            self.pipe.vae = torch.compile(
                fullgraph=True,
                mode="reduce-overhead",
                model=AutoencoderKL.from_pretrained(
                    pretrained_model_name_or_path=model_name,
                    use_safetensors=True,
                    torch_dtype=dtype,
                    subfolder="vae",
                ).to(self.gpu),
            )
        return self.pipe.vae

    def load(self, model, scheduler, karras, taesd, deepcache_interval, dtype=None):
        model_lower = model.lower()

        schedulers = {
            "DEIS 2M": DEISMultistepScheduler,
            "DPM++ 2M": DPMSolverMultistepScheduler,
            "DPM2 a": KDPM2AncestralDiscreteScheduler,
            "Euler a": EulerAncestralDiscreteScheduler,
            "Heun": HeunDiscreteScheduler,
            "LMS": LMSDiscreteScheduler,
            "PNDM": PNDMScheduler,
        }

        scheduler_kwargs = {
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "use_karras_sigmas": karras,
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "steps_offset": 1,
        }

        if scheduler == "PNDM" or scheduler == "Euler a":
            del scheduler_kwargs["use_karras_sigmas"]

        pipe_kwargs = {
            "scheduler": schedulers[scheduler](**scheduler_kwargs),
            "pretrained_model_name_or_path": model_lower,
            "requires_safety_checker": False,
            "use_safetensors": True,
            "safety_checker": None,
            "torch_dtype": dtype,
        }

        # already loaded
        if self.pipe is not None:
            model_name = self.pipe.config._name_or_path
            same_model = model_name.lower() == model_lower
            same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
            same_karras = (
                not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
                or self.pipe.scheduler.config.use_karras_sigmas == karras
            )

            if same_model:
                if not same_scheduler:
                    print(f"Switching to {scheduler}...")
                if not same_karras:
                    print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
                if not same_scheduler or not same_karras:
                    self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)

                self._load_vae(model_lower, taesd, dtype)
                self._load_deepcache(interval=deepcache_interval)
                self._load_tgate()
                return self.pipe
            else:
                print(f"Unloading {model_name.lower()}...")
                self.pipe = None
                torch.cuda.empty_cache()

        # no fp16 available
        if not ZERO_GPU and model_lower not in [
            "sg161222/realistic_vision_v5.1_novae",
            "prompthero/openjourney-v4",
            "linaqruf/anything-v3-1",
        ]:
            pipe_kwargs["variant"] = "fp16"

        print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")
        self.pipe = StableDiffusionPipeline.from_pretrained(**pipe_kwargs).to(self.gpu)
        self._load_vae(model_lower, taesd, dtype)
        self._load_deepcache(interval=deepcache_interval)
        self._load_tgate()
        self.pipe.load_textual_inversion(
            pretrained_model_name_or_path=list(EMBEDDINGS.keys()),
            tokens=list(EMBEDDINGS.values()),
        )
        return self.pipe


# applies tome to the pipeline
@contextmanager
def token_merging(pipe, tome_ratio=0):
    try:
        if tome_ratio > 0:
            tomesd.apply_patch(pipe, max_downsample=1, sx=2, sy=2, ratio=tome_ratio)
        yield
    finally:
        tomesd.remove_patch(pipe)  # idempotent


# parse prompts with arrays
def parse_prompt(prompt: str) -> list[str]:
    arrays = re.findall(r"\[\[(.*?)\]\]", prompt)

    if not arrays:
        return [prompt]

    tokens = [item.split(",") for item in arrays]
    combinations = list(product(*tokens))
    prompts = []

    for combo in combinations:
        current_prompt = prompt
        for i, token in enumerate(combo):
            current_prompt = current_prompt.replace(f"[[{arrays[i]}]]", token.strip(), 1)
        prompts.append(current_prompt)
    return prompts


def apply_style(prompt, style_name, negative=False):
    global styles
    if not style_name or style_name == "None":
        return prompt
    for style in styles:
        if style["name"] == style_name:
            if negative:
                return prompt + " . " + style["negative_prompt"]
            else:
                return style["prompt"].format(prompt=prompt)
    return prompt


# 1024x1024 for 50 steps can take ~10s each
@spaces.GPU(duration=44)
def generate(
    positive_prompt,
    negative_prompt="",
    style=None,
    seed=None,
    model="runwayml/stable-diffusion-v1-5",
    scheduler="PNDM",
    width=512,
    height=512,
    guidance_scale=7.5,
    inference_steps=50,
    num_images=1,
    karras=False,
    taesd=False,
    clip_skip=False,
    truncate_prompts=False,
    increment_seed=True,
    deepcache_interval=1,
    tgate_step=0,
    tome_ratio=0,
    log: Callable[[str], None] = None,
    Error=Exception,
):
    if not torch.cuda.is_available():
        raise Error("CUDA not available")

    # https://pytorch.org/docs/stable/generated/torch.manual_seed.html
    if seed is None or seed < 0:
        seed = int(datetime.now().timestamp() * 1_000_000) % (2**64)

    TORCH_DTYPE = (
        torch.bfloat16
        if torch.cuda.is_available() and torch.cuda.is_bf16_supported()
        else torch.float16
    )

    EMBEDDINGS_TYPE = (
        ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NORMALIZED
        if clip_skip
        else ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED
    )

    with torch.inference_mode():
        start = time.perf_counter()
        loader = Loader()
        pipe = loader.load(model, scheduler, karras, taesd, deepcache_interval, TORCH_DTYPE)

        # prompt embeds
        compel = Compel(
            textual_inversion_manager=DiffusersTextualInversionManager(pipe),
            dtype_for_device_getter=lambda _: TORCH_DTYPE,
            returned_embeddings_type=EMBEDDINGS_TYPE,
            truncate_long_prompts=truncate_prompts,
            text_encoder=pipe.text_encoder,
            tokenizer=pipe.tokenizer,
            device=pipe.device,
        )

        images = []
        current_seed = seed

        try:
            styled_negative_prompt = apply_style(negative_prompt, style, negative=True)
            neg_embeds = compel(styled_negative_prompt)
        except PromptParser.ParsingException:
            raise Error("ParsingException: Invalid negative prompt")

        for i in range(num_images):
            # seeded generator for each iteration
            generator = torch.Generator(device=pipe.device).manual_seed(current_seed)

            try:
                all_positive_prompts = parse_prompt(positive_prompt)
                prompt_index = i % len(all_positive_prompts)
                pos_prompt = all_positive_prompts[prompt_index]
                styled_pos_prompt = apply_style(pos_prompt, style)
                pos_embeds = compel(styled_pos_prompt)
                pos_embeds, neg_embeds = compel.pad_conditioning_tensors_to_same_length(
                    [pos_embeds, neg_embeds]
                )
            except PromptParser.ParsingException:
                raise Error("ParsingException: Invalid prompt")

            with token_merging(pipe, tome_ratio=tome_ratio):
                # cap the tgate step
                gate_step = min(
                    tgate_step if tgate_step > 0 else inference_steps,
                    inference_steps,
                )
                result = pipe.tgate(
                    num_inference_steps=inference_steps,
                    negative_prompt_embeds=neg_embeds,
                    guidance_scale=guidance_scale,
                    prompt_embeds=pos_embeds,
                    gate_step=gate_step,
                    generator=generator,
                    height=height,
                    width=width,
                )
                images.append((result.images[0], str(current_seed)))

            if increment_seed:
                current_seed += 1

        if ZERO_GPU:
            # spaces always start fresh
            loader.pipe = None

        end = time.perf_counter()
        diff = end - start
        if log:
            log(f"Generated {len(images)} image{'s' if len(images) > 1 else ''} in {diff:.2f}s")
        return images