File size: 9,322 Bytes
507a14d 9ceb843 e5d5995 8e499f4 9ceb843 ab74236 0b8c16d 507a14d ab74236 7b96731 9ceb843 e5d5995 7b96731 507a14d 9ceb843 e4cd4cd 9ceb843 507a14d 9ceb843 e5d5995 9ceb843 35e2ca1 90eea3b 35e2ca1 e5d5995 9ceb843 e5d5995 9ceb843 35e2ca1 e5d5995 9ceb843 56fcfaf 507a14d ab74236 9ceb843 56fcfaf ab74236 9ceb843 507a14d 9ceb843 56fcfaf 9ceb843 507a14d 8e499f4 e5d5995 ab74236 8e499f4 e5d5995 507a14d 9ceb843 507a14d ab74236 9ceb843 ab74236 9ceb843 ab74236 9ceb843 ab74236 9ceb843 ab74236 9ceb843 ab74236 56fcfaf ab74236 56fcfaf ab74236 9ceb843 ab74236 9ceb843 8e499f4 e5d5995 8e499f4 e5d5995 0b8c16d 9ceb843 8e499f4 e5d5995 9ceb843 e5d5995 9ceb843 507a14d e5d5995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import os
from huggingface_hub import HfApi, snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import load_dataset
from src.utils import load_all_data
from src.md import ABOUT_TEXT, TOP_TEXT
from src.plt import plot_avg_correlation
import numpy as np
api = HfApi()
COLLAB_TOKEN = os.environ.get("COLLAB_TOKEN")
evals_repo = "ai2-adapt-dev/HERM-Results"
eval_set_repo = "ai2-adapt-dev/rm-benchmark-dev"
repo_dir_herm = "./evals/herm/"
def restart_space():
api.restart_space(repo_id="ai2-adapt-dev/rm-benchmark-viewer", token=COLLAB_TOKEN)
print("Pulling evaluation results")
repo = snapshot_download(
local_dir=repo_dir_herm,
repo_id=evals_repo,
use_auth_token=COLLAB_TOKEN,
tqdm_class=None,
etag_timeout=30,
repo_type="dataset",
)
def avg_over_herm(dataframe):
"""
Averages over the subsets alpacaeval, mt-bench, llmbar, refusals, hep and returns dataframe with only these columns.
"""
new_df = dataframe.copy()
subsets = ["alpacaeval", "mt-bench", "llmbar", "refusals", "hep"]
# for each subset, avg the columns that have the subset in the column name, then add a new column with subset name and avg
for subset in subsets:
if subset == "refusals":
subset_cols = ["refusals-dangerous", "refusals-offensive", "donotanswer","xstest-should-refuse", "xstest-should-respond"]
else:
subset_cols = [col for col in new_df.columns if subset in col]
new_df[subset] = np.round(np.nanmean(new_df[subset_cols].values, axis=1), 2)
keep_columns = ["model", "average"] + subsets
new_df = new_df[keep_columns]
# replace average column with new average
new_df["average"] = np.round(np.nanmean(new_df[subsets].values, axis=1), 2)
# rename column "hep" to "hep (code)"
new_df = new_df.rename(columns={"hep": "hep (code)"})
return new_df
def expand_subsets(dataframe):
# TODO need to modify data/ script to do this
pass
# reference for length bias categories
length_categories = {
'alpacaeval-easy': 'True',
'alpacaeval-hard': 'True',
'alpacaeval-length': 'Neutral',
'donotanswer': 'False',
'hep-cpp': 'Neutral',
'hep-go': 'Neutral',
'hep-java': 'Neutral',
'hep-js': 'Neutral',
'hep-python': 'Neutral',
'hep-rust': 'Neutral',
'llmbar-adver-GPTInst': 'False',
'llmbar-adver-GPTOut': 'Neutral',
'llmbar-adver-manual': 'False',
'llmbar-adver-neighbor': 'False',
'llmbar-natural': 'Neutral',
'mt-bench-easy': 'False',
'mt-bench-hard': 'False',
'mt-bench-med': 'Neutral',
'refusals-dangerous': 'False',
'refusals-offensive': 'False',
'xstest-should-refuse': 'False',
'xstest-should-respond': 'True'
}
def length_bias_check(dataframe):
"""
Takes the raw herm dataframe and splits the data into new buckets according to length_categories.
Then, take the average of the three buckets as "average"
"""
new_df = dataframe.copy()
existing_subsets = new_df.columns[2:]
final_subsets = ["Length Bias", "Neutral", "Terse Bias"]
# new data is empty list dict for each final subset
new_data = {s: [] for s in final_subsets}
# now, subsets correspond to those with True, Nuetral, and False length bias
# check if length_categories[subset] == "True" or "False" or "Neutral"
for subset in existing_subsets:
subset_data = new_df[subset].values
subset_length = length_categories[subset]
# route to the correct bucket
if subset_length == "True":
new_data["Length Bias"].append(subset_data)
elif subset_length == "Neutral":
new_data["Neutral"].append(subset_data)
elif subset_length == "False":
new_data["Terse Bias"].append(subset_data)
# take average of new_data and add to new_df (removing other columns than model)
for subset in final_subsets:
new_df[subset] = np.round(np.nanmean(new_data[subset], axis=0), 2)
keep_columns = ["model"] + final_subsets
new_df = new_df[keep_columns]
# recompute average
# new_df["average"] = np.round(np.nanmean(new_df[final_subsets].values, axis=1), 2)
return new_df
herm_data = load_all_data(repo_dir_herm, subdir="eval-set").sort_values(by='average', ascending=False)
herm_data_avg = avg_over_herm(herm_data).sort_values(by='average', ascending=False)
herm_data_length = length_bias_check(herm_data).sort_values(by='Terse Bias', ascending=False)
prefs_data = load_all_data(repo_dir_herm, subdir="pref-sets").sort_values(by='average', ascending=False)
# prefs_data_sub = expand_subsets(prefs_data).sort_values(by='average', ascending=False)
col_types_herm = ["markdown"] + ["number"] * (len(herm_data.columns) - 1)
col_types_herm_avg = ["markdown"] + ["number"] * (len(herm_data_avg.columns) - 1)
cols_herm_data_length = ["markdown"] + ["number"] * (len(herm_data_length.columns) - 1)
col_types_prefs = ["markdown"] + ["number"] * (len(prefs_data.columns) - 1)
# col_types_prefs_sub = ["markdown"] + ["number"] * (len(prefs_data_sub.columns) - 1)
# for showing random samples
eval_set = load_dataset(eval_set_repo, use_auth_token=COLLAB_TOKEN, split="filtered")
def random_sample(r: gr.Request, subset):
if subset is None or subset == []:
sample_index = np.random.randint(0, len(eval_set) - 1)
sample = eval_set[sample_index]
else: # filter by subsets (can be list)
if isinstance(subset, str):
subset = [subset]
# filter down dataset to only include the subset(s)
eval_set_filtered = eval_set.filter(lambda x: x["subset"] in subset)
sample_index = np.random.randint(0, len(eval_set_filtered) - 1)
sample = eval_set_filtered[sample_index]
markdown_text = '\n\n'.join([f"**{key}**:\n\n{value}" for key, value in sample.items()])
return markdown_text
subsets = eval_set.unique("subset")
with gr.Blocks() as app:
# create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
with gr.Row():
gr.Markdown(TOP_TEXT)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("HERM Eval Set - Overview"):
with gr.Row():
herm_table = gr.Dataframe(
herm_data_avg.values,
datatype=col_types_herm_avg,
headers=herm_data_avg.columns.tolist(),
elem_id="herm_dataframe_avg",
height=1000,
)
with gr.TabItem("HERM Eval Set - Detailed"):
with gr.Row():
herm_table = gr.Dataframe(
herm_data.values,
datatype=col_types_herm,
headers=herm_data.columns.tolist(),
elem_id="herm_dataframe",
height=1000,
)
with gr.TabItem("HERM Eval Set - Length Bias"):
with gr.Row():
herm_table = gr.Dataframe(
herm_data_length.values,
datatype=cols_herm_data_length,
headers=herm_data_length.columns.tolist(),
elem_id="herm_dataframe_length",
height=1000,
)
with gr.TabItem("Known Pref. Sets"):
with gr.Row():
PREF_SET_TEXT = """
For more information, see the [dataset](https://huggingface.co/datasets/allenai/pref-test-sets).
"""
gr.Markdown(PREF_SET_TEXT)
with gr.Row():
pref_sets_table = gr.Dataframe(
prefs_data.values,
datatype=col_types_prefs,
headers=prefs_data.columns.tolist(),
elem_id="prefs_dataframe",
height=1000,
)
with gr.TabItem("About"):
with gr.Row():
gr.Markdown(ABOUT_TEXT)
with gr.TabItem("Dataset Viewer"):
with gr.Row():
# loads one sample
gr.Markdown("## Random Dataset Sample Viewer")
subset_selector = gr.Dropdown(subsets, label="Subset", value=None, multiselect=True)
button = gr.Button("Show Random Sample")
with gr.Row():
sample_display = gr.Markdown("{sampled data loads here}")
button.click(fn=random_sample, inputs=[subset_selector], outputs=[sample_display])
# removed plot because not pretty enough
# with gr.TabItem("Model Correlation"):
# with gr.Row():
# plot = plot_avg_correlation(herm_data_avg, prefs_data)
# gr.Plot(plot)
# Load data when app starts, TODO make this used somewhere...
# def load_data_on_start():
# data_herm = load_all_data(repo_dir_herm)
# herm_table.update(data_herm)
# data_herm_avg = avg_over_herm(repo_dir_herm)
# herm_table.update(data_herm_avg)
# data_prefs = load_all_data(repo_dir_prefs)
# pref_sets_table.update(data_prefs)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h
scheduler.start()
app.queue().launch()
|