File size: 4,313 Bytes
a1c932a
 
 
 
 
 
 
d03c47c
 
e197961
a1c932a
ea2ade6
a1c932a
 
 
 
 
 
 
ea2ade6
a1c932a
ea2ade6
 
 
3dc870c
712f1db
ea2ade6
 
 
d03c47c
ea2ade6
 
 
 
 
 
 
 
 
 
 
beccd45
ea2ade6
 
 
beccd45
 
ea2ade6
 
 
29f706c
ea2ade6
beccd45
 
ea2ade6
 
 
29f706c
a1c932a
ea2ade6
a1c932a
 
 
 
 
 
 
 
d03c47c
a1c932a
beccd45
a1c932a
d03c47c
a1c932a
712f1db
a1c932a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03c47c
a1c932a
 
 
 
 
 
 
 
 
 
 
 
d03c47c
a1c932a
 
 
 
 
 
 
 
d03c47c
a1c932a
 
 
 
 
 
 
 
 
 
 
 
beccd45
 
 
 
 
 
 
 
 
 
a1c932a
beccd45
712f1db
d03c47c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from fastapi import FastAPI, File, UploadFile, HTTPException
from pydantic import BaseModel
import base64
import io
import os

from PIL import Image
import torch
import numpy as np
import logging

# Existing imports
from utils import (
    check_ocr_box,
    get_yolo_model,
    get_caption_model_processor,
    get_som_labeled_img,
)
from ultralytics import YOLO
from transformers import AutoProcessor, AutoModelForCausalLM

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


# main.py (YOLO loading fix)
from utils import get_yolo_model
import torch

# Load YOLO model using official method
yolo_model = get_yolo_model(model_path="weights/icon_detect/best.pt")

# Handle device placement
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if str(device) == "cuda":
    yolo_model = yolo_model.cuda()
else:
    yolo_model = yolo_model.cpu()

# Load caption model and processor
try:
    processor = AutoProcessor.from_pretrained(
        "microsoft/Florence-2-base", trust_remote_code=True
    )
    model = AutoModelForCausalLM.from_pretrained(
        "weights/icon_caption_florence",
        torch_dtype=torch.float16,
        trust_remote_code=True,
    ).to("cuda")
except Exception as e:
    logger.warning(f"Failed to load caption model on GPU: {e}. Falling back to CPU.")
    model = AutoModelForCausalLM.from_pretrained(
        "weights/icon_caption_florence",
        torch_dtype=torch.float16,
        trust_remote_code=True,
    )

caption_model_processor = {"processor": processor, "model": model}
logger.info("Finished loading models!!!")

app = FastAPI()

class ProcessResponse(BaseModel):
    image: str  # Base64 encoded image
    parsed_content_list: str
    label_coordinates: str

def process(image_input: Image.Image, box_threshold: float, iou_threshold: float) -> ProcessResponse:
    image_save_path = "imgs/saved_image_demo.png"
    os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
    image_input.save(image_save_path)
    
    image = Image.open(image_save_path)
    box_overlay_ratio = image.size[0] / 3200
    draw_bbox_config = {
        "text_scale": 0.8 * box_overlay_ratio,
        "text_thickness": max(int(2 * box_overlay_ratio), 1),
        "text_padding": max(int(3 * box_overlay_ratio), 1),
        "thickness": max(int(3 * box_overlay_ratio), 1),
    }

    ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
        image_save_path,
        display_img=False,
        output_bb_format="xyxy",
        goal_filtering=None,
        easyocr_args={"paragraph": False, "text_threshold": 0.9},
        use_paddleocr=True,
    )
    text, ocr_bbox = ocr_bbox_rslt

    dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
        image_save_path,
        yolo_model,
        BOX_TRESHOLD=box_threshold,
        output_coord_in_ratio=True,
        ocr_bbox=ocr_bbox,
        draw_bbox_config=draw_bbox_config,
        caption_model_processor=caption_model_processor,
        ocr_text=text,
        iou_threshold=iou_threshold,
    )
    image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
    print("Finish processing")
    parsed_content_list_str = "\n".join(parsed_content_list)

    buffered = io.BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

    return ProcessResponse(
        image=img_str,
        parsed_content_list=parsed_content_list_str,
        label_coordinates=str(label_coordinates),
    )

@app.post("/process_image", response_model=ProcessResponse)
async def process_image(
    image_file: UploadFile = File(...),
    box_threshold: float = 0.05,
    iou_threshold: float = 0.1,
):
    try:
        contents = await image_file.read()
        image_input = Image.open(io.BytesIO(contents)).convert("RGB")
        
        print(f"Processing image: {image_file.filename}")
        print(f"Image size: {image_input.size}")
        
        response = process(image_input, box_threshold, iou_threshold)
        if not response.image:
            raise ValueError("Empty image in response")
            
        return response
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=str(e))