File size: 6,888 Bytes
3aa52df d46f971 3aa52df d46f971 3aa52df 0f91f48 3aa52df 0f91f48 3aa52df d46f971 3aa52df 0f91f48 3aa52df d46f971 3aa52df d46f971 3aa52df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
import requests
from tqdm import tqdm
from datasets import load_dataset
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import Dense, Input, Concatenate, Embedding, Flatten
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.preprocessing import LabelEncoder
import joblib
from PIL import UnidentifiedImageError, Image
import gradio as gr
# Constants
MAX_TEXT_LENGTH = 200
EMBEDDING_DIM = 100
IMAGE_SIZE = 224
BATCH_SIZE = 32
def load_and_preprocess_data(subset_size=2700):
# Load dataset
dataset = load_dataset("thefcraft/civitai-stable-diffusion-337k")
dataset_subset = dataset['train'].shuffle(seed=42).select(range(subset_size))
# Filter out NSFW content
dataset_subset = dataset_subset.filter(lambda x: not x['nsfw'])
return dataset_subset
def process_text_data(dataset_subset):
# Combine prompt and negative prompt
text_data = [f"{sample['prompt']} {sample['negativePrompt']}" for sample in dataset_subset]
# Tokenize text
tokenizer = Tokenizer()
tokenizer.fit_on_texts(text_data)
sequences = tokenizer.texts_to_sequences(text_data)
text_data_padded = pad_sequences(sequences, maxlen=MAX_TEXT_LENGTH)
return text_data_padded, tokenizer
def process_image_data(dataset_subset):
image_dir = 'civitai_images'
os.makedirs(image_dir, exist_ok=True)
image_data = []
valid_indices = []
for idx, sample in enumerate(tqdm(dataset_subset)):
img_url = sample['url']
img_path = os.path.join(image_dir, os.path.basename(img_url))
try:
# Download and save image
response = requests.get(img_url)
response.raise_for_status()
if 'image' not in response.headers['Content-Type']:
continue
with open(img_path, 'wb') as f:
f.write(response.content)
# Load and preprocess image
img = image.load_img(img_path, target_size=(IMAGE_SIZE, IMAGE_SIZE))
img_array = image.img_to_array(img)
img_array = preprocess_input(img_array)
image_data.append(img_array)
valid_indices.append(idx)
except Exception as e:
print(f"Error processing image {img_url}: {e}")
continue
return np.array(image_data), valid_indices
def create_multimodal_model(num_words, num_classes):
# Image input branch (CNN)
image_input = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
cnn_base = ResNet50(weights='imagenet', include_top=False, pooling='avg')
cnn_features = cnn_base(image_input)
# Text input branch (MLP)
text_input = Input(shape=(MAX_TEXT_LENGTH,))
embedding_layer = Embedding(num_words, EMBEDDING_DIM)(text_input)
flatten_text = Flatten()(embedding_layer)
text_features = Dense(256, activation='relu')(flatten_text)
# Combine features
combined = Concatenate()([cnn_features, text_features])
# Fully connected layers
x = Dense(512, activation='relu')(combined)
x = Dense(256, activation='relu')(x)
output = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=[image_input, text_input], outputs=output)
return model
def train_model():
# Load and preprocess data
dataset_subset = load_and_preprocess_data()
# Process text data
text_data_padded, tokenizer = process_text_data(dataset_subset)
# Process image data
image_data, valid_indices = process_image_data(dataset_subset)
# Get valid text data and labels
text_data_padded = text_data_padded[valid_indices]
model_names = [dataset_subset[i]['Model'] for i in valid_indices]
# Encode labels
label_encoder = LabelEncoder()
encoded_labels = label_encoder.fit_transform(model_names)
# Create and compile model
model = create_multimodal_model(
num_words=len(tokenizer.word_index) + 1,
num_classes=len(label_encoder.classes_)
)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# Train model
history = model.fit(
[image_data, text_data_padded],
encoded_labels,
batch_size=BATCH_SIZE,
epochs=10,
validation_split=0.2
)
# Save models and encoders
model.save('multimodal_model')
joblib.dump(tokenizer, 'tokenizer.pkl')
joblib.dump(label_encoder, 'label_encoder.pkl')
return model, tokenizer, label_encoder
def get_recommendations(image_input, text_input, model, tokenizer, label_encoder, top_k=5):
# Preprocess image
img_array = image.img_to_array(image_input)
img_array = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE))
img_array = preprocess_input(img_array)
img_array = np.expand_dims(img_array, axis=0)
# Preprocess text
text_sequence = tokenizer.texts_to_sequences([text_input])
text_padded = pad_sequences(text_sequence, maxlen=MAX_TEXT_LENGTH)
# Get predictions
predictions = model.predict([img_array, text_padded])
top_indices = np.argsort(predictions[0])[-top_k:][::-1]
# Get recommended model names and confidence scores
recommendations = [
(label_encoder.inverse_transform([idx])[0], predictions[0][idx])
for idx in top_indices
]
return recommendations
# Gradio interface
def create_gradio_interface():
# Load saved models
model = tf.keras.models.load_model('multimodal_model')
tokenizer = joblib.load('tokenizer.pkl')
label_encoder = joblib.load('label_encoder.pkl')
def predict(img, text):
recommendations = get_recommendations(img, text, model, tokenizer, label_encoder)
return "\n".join([f"Model: {name}, Confidence: {conf:.2f}" for name, conf in recommendations])
interface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Enter Prompt")
],
outputs=gr.Textbox(label="Recommended Models"),
title="Multimodal Model Recommendation System",
description="Upload an image and enter a prompt to get model recommendations"
)
return interface
if __name__ == "__main__":
# Train model if not already trained
if not os.path.exists('multimodal_model'):
model, tokenizer, label_encoder = train_model()
# Launch Gradio interface
interface = create_gradio_interface()
interface.launch() |