Spaces:
Runtime error
Runtime error
File size: 6,393 Bytes
77405f7 9f7f573 77405f7 9f7f573 77405f7 9f7f573 2b9d84c 9f7f573 2b9d84c 2b9022f 2b9d84c abb1c69 2b9d84c 9f7f573 90966f7 2b9d84c 9f7f573 2b9d84c 77405f7 2b9d84c abb1c69 2b9d84c abb1c69 2b9d84c abb1c69 2b9d84c 77405f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datasets import load_dataset
from sklearn.manifold import TSNE
import streamlit as st
from clarin_datasets.dataset_to_show import DatasetToShow
from clarin_datasets.utils import (
PLOT_COLOR_PALETTE,
embed_sentence
)
class NkjpPosDataset(DatasetToShow):
def __init__(self):
DatasetToShow.__init__(self)
self.data_dict_named = None
self.dataset_name = "clarin-pl/nkjp-pos"
self.description = [
f"""
Dataset link: https://huggingface.co/datasets/{self.dataset_name}
NKJP-POS is a part the National Corpus of Polish (Narodowy Korpus Języka Polskiego).
Its objective is part-of-speech tagging, e.g. nouns, verbs, adjectives, adverbs, etc. During the creation of
corpus, texts of were annotated by humans from various sources, covering many domains and genres.
""",
"Tasks (input, output and metrics)",
"""
Part-of-speech tagging (POS tagging) - tagging words in text with their corresponding part of speech.
Input ('tokens' column): sequence of tokens
Output ('pos_tags' column): sequence of predicted tokens’ classes (35 possible classes, described in detail in the annotation guidelines)
Measurements: F1-score (seqeval)
Example:
Input: ['Zarejestruj', 'się', 'jako', 'bezrobotny', '.']
Input (translated by DeepL): Register as unemployed.
Output: ['impt', 'qub', 'conj', 'subst', 'interp']
""",
]
def load_data(self):
raw_dataset = load_dataset(self.dataset_name)
self.data_dict = {
subset: raw_dataset[subset].to_pandas() for subset in self.subsets
}
self.data_dict_named = {}
for subset in self.subsets:
references = raw_dataset[subset]["pos_tags"]
references_named = [
[
raw_dataset[subset].features["pos_tags"].feature.names[label]
for label in labels
]
for labels in references
]
self.data_dict_named[subset] = pd.DataFrame(
{
"tokens": self.data_dict[subset]["tokens"],
"tags": references_named,
}
)
def show_dataset(self):
header = st.container()
description = st.container()
dataframe_head = st.container()
class_distribution = st.container()
tsne_projection = st.container()
with header:
st.title(self.dataset_name)
with description:
st.header("Dataset description")
st.write(self.description[0])
st.subheader(self.description[1])
st.write(self.description[2])
with dataframe_head:
st.header("First 10 observations of the chosen subset")
subset_to_show = st.selectbox(
label="Select subset to see", options=self.subsets
)
df_to_show = (
self.data_dict[subset_to_show].head(10).drop("id", axis="columns")
)
st.dataframe(df_to_show)
st.text_area(label="LaTeX code", value=df_to_show.style.to_latex())
class_distribution_dict = {}
for subset in self.subsets:
all_labels_from_subset = self.data_dict_named[subset]["tags"].tolist()
all_labels_from_subset = [
x for subarray in all_labels_from_subset for x in subarray
]
all_labels_from_subset = pd.Series(all_labels_from_subset)
class_distribution_dict[subset] = (
all_labels_from_subset.value_counts(normalize=True)
.sort_index()
.reset_index()
.rename({"index": "class", 0: subset}, axis="columns")
)
class_distribution_df = pd.merge(
class_distribution_dict["train"],
class_distribution_dict["test"],
on="class",
)
with class_distribution:
st.header("Class distribution in each subset")
st.dataframe(class_distribution_df)
st.text_area(
label="LaTeX code", value=class_distribution_df.style.to_latex()
)
SHOW_TSNE_PROJECTION = False
if SHOW_TSNE_PROJECTION:
with tsne_projection:
st.header("t-SNE projection of the dataset")
subset_to_project = st.selectbox(
label="Select subset to project", options=self.subsets
)
tokens_unzipped = self.data_dict_named[subset_to_project]["tokens"].tolist()
tokens_unzipped = np.array([x for subarray in tokens_unzipped for x in subarray])
labels_unzipped = self.data_dict_named[subset_to_project]["tags"].tolist()
labels_unzipped = np.array([x for subarray in labels_unzipped for x in subarray])
df_unzipped = pd.DataFrame(
{
"tokens": tokens_unzipped,
"tags": labels_unzipped,
}
)
tokens_unzipped = df_unzipped["tokens"].values
labels_unzipped = df_unzipped["tags"].values
mapping_dict = {name: number for number, name in enumerate(set(labels_unzipped))}
labels_as_ints = [mapping_dict[label] for label in labels_unzipped]
embedded_tokens = np.array(
[embed_sentence(x) for x in tokens_unzipped]
)
reducer = TSNE(
n_components=2
)
transformed_embeddings = reducer.fit_transform(embedded_tokens)
fig, ax = plt.subplots()
ax.scatter(
x=transformed_embeddings[:, 0],
y=transformed_embeddings[:, 1],
c=[
PLOT_COLOR_PALETTE[i]
for i in labels_as_ints
],
)
st.pyplot(fig)
|