Spaces:
Running
Running
import logging | |
import gradio as gr | |
import pandas as pd | |
import torch | |
from GoogleNews import GoogleNews | |
from transformers import pipeline | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
SENTIMENT_ANALYSIS_MODEL = ( | |
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" | |
) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
logging.info(f"Using device: {DEVICE}") | |
logging.info("Initializing sentiment analysis model...") | |
sentiment_analyzer = pipeline( | |
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE | |
) | |
logging.info("Model initialized successfully") | |
def fetch_articles(query): | |
try: | |
logging.info(f"Fetching articles for query: '{query}'") | |
googlenews = GoogleNews(lang="en") | |
googlenews.search(query) | |
articles = googlenews.result() | |
logging.info(f"Fetched {len(articles)} articles") | |
return articles | |
except Exception as e: | |
logging.error( | |
f"Error while searching articles for query: '{query}'. Error: {e}" | |
) | |
raise gr.Error( | |
f"Unable to search articles for query: '{query}'. Try again later...", | |
duration=5, | |
) | |
def analyze_article_sentiment(article): | |
logging.info(f"Analyzing sentiment for article: {article['title']}") | |
sentiment = sentiment_analyzer(article["desc"])[0] | |
article["sentiment"] = sentiment | |
return article | |
def analyze_asset_sentiment(asset_name): | |
logging.info(f"Starting sentiment analysis for asset: {asset_name}") | |
logging.info("Fetching articles") | |
articles = fetch_articles(asset_name) | |
logging.info("Analyzing sentiment of each article") | |
analyzed_articles = [analyze_article_sentiment(article) for article in articles] | |
logging.info("Sentiment analysis completed") | |
return convert_to_dataframe(analyzed_articles) | |
def convert_to_dataframe(analyzed_articles): | |
df = pd.DataFrame(analyzed_articles) | |
df["Title"] = df.apply( | |
lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>', | |
axis=1, | |
) | |
df["Description"] = df["desc"] | |
df["Date"] = df["date"] | |
def sentiment_badge(sentiment): | |
colors = { | |
"negative": "red", | |
"neutral": "gray", | |
"positive": "green", | |
} | |
color = colors.get(sentiment, "grey") | |
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>' | |
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"])) | |
return df[["Sentiment", "Title", "Description", "Date"]] | |
with gr.Blocks() as iface: | |
gr.Markdown("# Trading Asset Sentiment Analysis") | |
gr.Markdown( | |
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!" | |
) | |
with gr.Row(): | |
input_asset = gr.Textbox( | |
label="Asset Name", | |
lines=1, | |
placeholder="Enter the name of the trading asset...", | |
) | |
with gr.Row(): | |
analyze_button = gr.Button("Analyze Sentiment", size="sm") | |
gr.Examples( | |
examples=[ | |
"Bitcoin", | |
"Tesla", | |
"Apple", | |
"Amazon", | |
], | |
inputs=input_asset, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Blocks(): | |
gr.Markdown("## Articles and Sentiment Analysis") | |
articles_output = gr.Dataframe( | |
headers=["Sentiment", "Title", "Description", "Date"], | |
datatype=["markdown", "html", "markdown", "markdown"], | |
wrap=False, | |
) | |
analyze_button.click( | |
analyze_asset_sentiment, | |
inputs=[input_asset], | |
outputs=[articles_output], | |
) | |
logging.info("Launching Gradio interface") | |
iface.queue().launch() | |