File size: 14,612 Bytes
4264bb9
 
 
 
 
 
 
 
 
 
f17dea1
4264bb9
 
04a7b4c
4264bb9
 
 
c20b1d1
f17dea1
4264bb9
 
 
 
f17dea1
4264bb9
 
 
2429b6f
4264bb9
 
 
05ba4fd
2429b6f
4a84917
4264bb9
 
c20b1d1
4264bb9
04a7b4c
4264bb9
 
 
 
 
04a7b4c
4264bb9
 
 
6d1681d
4264bb9
 
6d1681d
4264bb9
6d1681d
4264bb9
 
 
6d1681d
4264bb9
 
6d1681d
4264bb9
 
 
 
 
6d1681d
4264bb9
 
 
6d1681d
4264bb9
 
 
 
 
6d1681d
4264bb9
6d1681d
4264bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1681d
4264bb9
 
6d1681d
4264bb9
04a7b4c
4264bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f7c6f
4264bb9
 
 
 
 
 
 
 
 
 
 
 
 
72f7c6f
4264bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46f624d
 
 
 
 
 
 
 
4264bb9
 
020feee
4264bb9
 
 
 
 
 
 
 
 
 
 
46f624d
0e3535d
 
 
 
 
 
 
 
 
4264bb9
0e3535d
4264bb9
46f624d
0e3535d
 
 
 
 
 
344b3c1
4264bb9
 
 
72f7c6f
04a7b4c
 
 
 
 
 
 
 
 
 
 
4264bb9
 
 
04a7b4c
4264bb9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# import os
# import re
# import streamlit as st
# import ast
# import json
# import openai
# from llama_index.llms.openai import OpenAI
# from llama_index.core.llms import ChatMessage
# from llama_index.llms.anthropic import Anthropic
# from llama_index.llms.mistralai import MistralAI

# import nest_asyncio
# nest_asyncio.apply()

# # import ollama
# # from llama_index.llms.ollama import Ollama
# # from llama_index.core.llms import ChatMessage


# # OpenAI credentials
# # key = os.getenv('OPENAI_API_KEY')
# # openai.api_key = key 
# # os.environ["OPENAI_API_KEY"] = key

# # Anthropic credentials
# # key = os.getenv('CLAUDE_API_KEY')
# # os.environ["ANTHROPIC_API_KEY"] = key

# # Mistral
# key = os.getenv('MISTRAL_API_KEY')
# os.environ["MISTRAL_API_KEY"] = key



# # Streamlit UI
# st.title("Auto Test Case Generation using LLM")

# uploaded_files = st.file_uploader("Upload a python or Java file", type=[".py","java"], accept_multiple_files=True)

# if uploaded_files:
#     for uploaded_file in uploaded_files:
#         with open(f"./data/{uploaded_file.name}", 'wb') as f: 
#             f.write(uploaded_file.getbuffer())
#         st.success("File uploaded...")

#         # Check file type
#         _, file_extension = os.path.splitext(uploaded_file.name)
#         print(file_extension)

#         st.success("Fetching list of functions...")
#         file_path = f"./data/{uploaded_file.name}"
        
#         def extract_functions_from_file(file_path, file_extension):

#             if file_extension == '.py':
#                 with open(file_path, "r") as file:
#                     file_content = file.read()
                
#                 parsed_content = ast.parse(file_content)
#                 methods = {}
                
#                 for node in ast.walk(parsed_content):
#                     if isinstance(node, ast.FunctionDef):
#                         func_name = node.name
#                         func_body = ast.get_source_segment(file_content, node)
#                         methods[func_name] = func_body
                        
#             elif file_extension == '.java':
#                 with open(file_path, 'r') as file:
#                     lines = file.readlines()
                
#                 methods = {}
#                 inside_method = False
#                 method_name = None
#                 method_body = []
#                 brace_count = 0
                
#                 method_signature_pattern = re.compile(r'((?:public|protected|private|static|\s)*)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)\s*\{')
                
#                 for line in lines:
#                     if not inside_method:
#                         match = method_signature_pattern.search(line)
#                         if match:
#                             modifiers, method_name = match.groups()
#                             inside_method = True
#                             method_body.append(line)
#                             brace_count = line.count('{') - line.count('}')
#                     else:
#                         method_body.append(line)
#                         brace_count += line.count('{') - line.count('}')
#                         if brace_count == 0:
#                             inside_method = False
#                             methods[method_name] = ''.join(method_body)
#                             method_body = []
                            
#                 if 'main' in methods.keys():
#                     del(methods['main'])

#             return methods
        
#         functions = extract_functions_from_file(file_path, file_extension)
#         list_of_functions = list(functions.keys())
#         st.write(list_of_functions)

#         def res(prompt, model=None):

#             # response = openai.chat.completions.create(
#             #     model=model,
#             #     messages=[
#             #         {"role": "user",
#             #          "content": prompt,
#             #         }
#             #     ]
#             # )

#             # return response.choices[0].message.content

#             response = [
#                 ChatMessage(role="system", content="You are a sincere and helpful coding assistant"),
#                 ChatMessage(role="user", content=prompt),
#             ]
#             # resp = Anthropic(model=model).chat(response)
#             resp = MistralAI(model).chat(response)
#             return resp

#         # Initialize session state for chat messages
#         if "messages" not in st.session_state:
#             st.session_state.messages = []

#          # Display chat messages from history on app rerun
#         for message in st.session_state.messages:
#             with st.chat_message(message["role"]):
#                 st.markdown(message["content"])

#         # Accept user input
#         if func := st.chat_input("Enter the function name for generating test cases:"):
#             st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
#             st.success(f"Generating test cases for {func}")

#             func = ''.join(func.split())

#             if func not in list_of_functions:
#                 st.write("Incorrect function name")
            
#             else:
#                 snippet = functions[func]

#                 # Generation
#                 # model = "gpt-3.5-turbo"
#                 # model = "claude-3-haiku-20240307"
#                 # model = "claude-3-sonnet-20240229"
#                 # model = "claude-3-opus-20240229"
#                 model = "codestral-latest"
        
#                 # Generation
#                 # resp = ollama.generate(model='codellama', 
#                 #                     prompt=f""" Your task is to generate unit test cases for this function : {snippet}\
#                 #                     \n\n Politely refuse if the function is not suitable for generating test cases.
#                 #                     \n\n Generate atleast 5 unit test case. Include couple of edge cases as well.
#                 #                     \n\n There should be no duplicate test cases.
#                 #                   \n\n Avoid generating repeated statements.
#                 #                     """)

#                 prompt=f""" Your task is to generate unit test cases for this function : \n\n{snippet}\
#                         \n\n Generate between 3 to 8 unique unit test cases. Include couple of edge cases as well.
#                         \n\n All the test cases should have the mandatory assert statement. 
#                         \n\n Every test case should be defined as a method inside the class.
#                         \n\n All the test cases should have textual description.
#                         \n\n Politely refuse if the function is not suitable for generating test cases.
#                         \n\n There should be no duplicate and incomplete test case. 
#                         \n\n Avoid generating repeated statements.
#                         \n\n Recheck your response before generating.
#                         \n\n Do not share the last Test Case. 
#                     """

#                 # print(prompt)
              
#                 resp = res(prompt = prompt, model = model)

#                 # Post Processing
#                 post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
#                         \n\n Do not add anything extra. Just copy and paste everything except the last test case.
#                         \n\n Do not mention the count of total number of test cases in the response.
#                         \n\n Do not mention this sentence - "I have excluded the last test case as per your request"
#                     """
#                 post_resp = res(prompt = post_prompt, model = model)
#                 st.session_state.messages.append({"role": "assistant", "content": f"{post_resp}"})
#                 st.markdown(post_resp)
#                 # st.session_state.messages.append({"role": "assistant", "content": f"{resp['response']}"})
#                 # st.markdown(resp['response'])




import os
import re
import ast
import streamlit as st
from llama_index.llms.openai import OpenAI
from llama_index.core.llms import ChatMessage
from llama_index.llms.anthropic import Anthropic
from llama_index.llms.mistralai import MistralAI
import nest_asyncio

class TestCaseGenerator:
    def __init__(self):
        nest_asyncio.apply()
        self.key = os.getenv('MISTRAL_API_KEY')
        os.environ["MISTRAL_API_KEY"] = self.key
        self.model = "codestral-latest"
        self.functions = {}
        self.list_of_functions = []

    def setup_streamlit_ui(self):
        st.title("Auto Test Case Generation using LLM")
        uploaded_files = st.file_uploader("Upload a python or Java file", type=["py", "java"], accept_multiple_files=True)
        if uploaded_files:
            for uploaded_file in uploaded_files:
                self.process_uploaded_file(uploaded_file)

    def process_uploaded_file(self, uploaded_file):
        with open(f"./data/{uploaded_file.name}", 'wb') as f:
            f.write(uploaded_file.getbuffer())
        st.success("File uploaded...")
        _, file_extension = os.path.splitext(uploaded_file.name)
        st.success("Fetching list of functions...")
        file_path = f"./data/{uploaded_file.name}"
        self.extract_functions_from_file(file_path, file_extension)
        st.write(self.list_of_functions)
      

    def extract_functions_from_file(self, file_path, file_extension):
        if file_extension == '.py':
            self.extract_python_functions(file_path)
        elif file_extension == '.java':
            self.extract_java_functions(file_path)
        if 'main' in self.functions.keys():
            del(self.functions['main'])
        self.list_of_functions = list(self.functions.keys())

    def extract_python_functions(self, file_path):
        with open(file_path, "r") as file:
            file_content = file.read()
        parsed_content = ast.parse(file_content)
        for node in ast.walk(parsed_content):
            if isinstance(node, ast.FunctionDef):
                func_name = node.name
                func_body = ast.get_source_segment(file_content, node)
                self.functions[func_name] = func_body

    def extract_java_functions(self, file_path):
        with open(file_path, 'r') as file:
            lines = file.readlines()
        inside_method = False
        method_name = None
        method_body = []
        brace_count = 0
        method_signature_pattern = re.compile(r'((?:public|protected|private|static|\s)*)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)\s*\{')
        for line in lines:
            if not inside_method:
                match = method_signature_pattern.search(line)
                if match:
                    modifiers, method_name = match.groups()
                    inside_method = True
                    method_body.append(line)
                    brace_count = line.count('{') - line.count('}')
            else:
                method_body.append(line)
                brace_count += line.count('{') - line.count('}')
                if brace_count == 0:
                    inside_method = False
                    self.functions[method_name] = ''.join(method_body)
                    method_body = []

    # def generate_response(self, prompt):
    #     response = [
    #         ChatMessage(role="system", content="You are a sincere and helpful coding assistant"),
    #         ChatMessage(role="user", content=prompt),
    #     ]
    #     resp = MistralAI(self.model).chat(response)
    #     return resp

    def generate_response(self, prompt):
        response = [
            ChatMessage(role="system", content="You are tasked with generating unit test cases, including descriptions and assert statements, for a given function. Follow these instructions carefully:"),
            ChatMessage(role="user", content=prompt),
        ]
        resp = MistralAI(self.model).chat(response)
        return resp

    def generate_test_cases(self, func):
        if func not in self.list_of_functions:
            st.write("Incorrect function name")
            return

        snippet = self.functions[func]
       
        prompt=f""" Your task is to generate unit test cases for this function : \n\n{snippet}\
            \n\n Generate between 3 to 8 unique unit test cases. Include couple of edge cases as well.
            \n\n All the test cases should have the mandatory assert statement. 
            \n\n All the test cases should have textual description.
            \n\n Politely refuse if the function is not suitable for generating test cases.
            \n\n There should be no duplicate and incomplete test case. 
            \n\n Avoid generating repeated statements.
            \n\n Recheck your response before generating.
            \n\n Do not share the last Test Case. 
        """
                           
        resp = self.generate_response(prompt)
        
        post_prompt = f"""Except the last test case, display everything that is present in this end to end: \n\n{resp}\
        \n\n - Do not add anything extra. Just copy and paste everything except the last test case.
        \n\n - Do not mention the count of total number of test cases in the response.
        \n\n - Do not mention this sentence - "I have excluded the last test case as per your request"
        """
        post_resp = self.generate_response(post_prompt)
        return post_resp

    def run(self):
        self.setup_streamlit_ui()
        
        if "messages" not in st.session_state:
            st.session_state.messages = []

        for message in st.session_state.messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])

        if func := st.chat_input("Enter the function name for generating test cases:"):
            st.session_state.messages.append({"role": "assistant", "content": f"Generating test cases for {func}"})
            st.success(f"Generating test cases for {func}")
            func = ''.join(func.split())
            test_cases = self.generate_test_cases(func)
            st.session_state.messages.append({"role": "assistant", "content": f"{test_cases}"})
            st.markdown(test_cases)

if __name__ == "__main__":
    test_case_generator = TestCaseGenerator()
    test_case_generator.run()