File size: 9,121 Bytes
58cafdb
927931c
58cafdb
 
 
 
 
 
d7e5659
 
 
 
58cafdb
 
9149806
 
58cafdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67e757
 
 
58cafdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dd53c
58cafdb
 
 
 
d5057e8
58cafdb
 
 
 
 
 
 
 
 
 
 
 
ad3ebf5
58cafdb
 
 
9149806
 
58cafdb
 
 
 
 
b60aecf
c67e757
 
 
 
 
 
 
 
 
 
b60aecf
58cafdb
b60aecf
58cafdb
 
 
2fa7bce
4afc417
58cafdb
 
 
 
 
 
 
 
 
 
 
 
2fa7bce
58cafdb
 
 
 
 
 
 
 
9ba2a1c
d7e5659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927931c
58cafdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc16417
58cafdb
 
 
 
 
4c609c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f7bc3d
4c609c5
 
58cafdb
9ba2a1c
a1dd53c
418f143
 
 
 
 
 
 
 
58cafdb
3348f02
d7e5659
 
0f7bc3d
d7e5659
0ffaaa6
d7e5659
e07f7f3
58cafdb
e07f7f3
 
58cafdb
e07f7f3
58cafdb
 
5d8cdf1
3348f02
 
418f143
 
3348f02
6f3ebe7
418f143
58cafdb
96c76ae
a1dd53c
58cafdb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import time
import moviepy.editor as mp
import psutil
import gradio as gr
import spaces
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import base64
import requests



DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
DEFAULT_MODEL_NAME = "openai/whisper-large-v3"

BATCH_SIZE = 8

print('start app')

device = 0 if torch.cuda.is_available() else "cpu"
if device == "cpu":
    DEFAULT_MODEL_NAME = "openai/whisper-tiny"

def load_pipeline(model_name):
    return pipeline(
        task="automatic-speech-recognition",
        model=model_name,
        chunk_length_s=30,
        device=device,
    )

pipe = load_pipeline(DEFAULT_MODEL_NAME)
openai_pipe=load_pipeline("openai/whisper-large-v3")
default_pipe = load_pipeline(DEFAULT_MODEL_NAME)

#pipe = None


from gpustat import GPUStatCollection

def update_gpu_status():
    if torch.cuda.is_available() == False:
        return "No Nvidia Device"
    try:
        gpu_stats = GPUStatCollection.new_query()
        for gpu in gpu_stats:
            # Assuming you want to monitor the first GPU, index 0
            gpu_id = gpu.index
            gpu_name = gpu.name
            gpu_utilization = gpu.utilization
            memory_used = gpu.memory_used
            memory_total = gpu.memory_total
            memory_utilization = (memory_used / memory_total) * 100
            gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
            return gpu_status

    except Exception as e:
        print(f"Error getting GPU stats: {e}")
        return torch_update_gpu_status()

def torch_update_gpu_status():
    if torch.cuda.is_available():
        gpu_info = torch.cuda.get_device_name(0)
        gpu_memory = torch.cuda.mem_get_info(0)
        total_memory = gpu_memory[1] / (1024 * 1024)
        free_memory=gpu_memory[0] /(1024 *1024)
        used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
        
        gpu_status = f"GPU: {gpu_info} Free Memory:{free_memory}MB   Total Memory: {total_memory:.2f} MB  Used Memory: {used_memory:.2f} MB"
    else:
        gpu_status = "No GPU available"
    return gpu_status

def update_cpu_status():
    import datetime
    # Get the current time
    current_time = datetime.datetime.now().time()
    # Convert the time to a string
    time_str = current_time.strftime("%H:%M:%S")

    cpu_percent = psutil.cpu_percent()
    cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
    return cpu_status

@spaces.GPU
def update_status():
    gpu_status = update_gpu_status()
    cpu_status = update_cpu_status()
    sys_status=gpu_status+"\n\n"+cpu_status
    return sys_status

def refresh_status():
    return update_status()


@spaces.GPU
def transcribe(audio_path, model_name):
    print(str(time.time())+'  start transcribe ')
    
    if audio_path is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    if model_name is None:
        model_name=DEFAULT_MODEL_NAME
    audio_path=audio_path.strip()
    model_name=model_name.strip()
    
    global pipe
    if model_name != pipe.model.name_or_path:
        print("old model is:"+ pipe.model.name_or_path )
        if model_name=="openai/whisper-large-v3":
            pipe=openai_pipe
            print(str(time.time())+" use openai model " + pipe.model.name_or_path)
        elif model_name==DEFAULT_MODEL_NAME:
            pipe=default_pipe
            print(str(time.time())+" use default model " + pipe.model.name_or_path)
        else:
            print(str(time.time())+'  start load model ' + model_name)
            pipe = load_pipeline(model_name)
            print(str(time.time())+'  finished load model ' + model_name)
    
    start_time = time.time()  # Record the start time
    print(str(time.time())+'  start processing and set recording start time point')
    # Load the audio file and calculate its duration
    audio = mp.AudioFileClip(audio_path)
    audio_duration = audio.duration
    print(str(time.time())+'   start pipe ')
    text = pipe(audio_path, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
    end_time = time.time()  # Record the end time

    transcription_time = end_time - start_time  # Calculate the transcription time

    # Create the transcription time output with additional information
    transcription_time_output = (
        f"Transcription Time: {transcription_time:.2f} seconds\n"
        f"Audio Duration: {audio_duration:.2f} seconds\n"
        f"Model Used: {model_name}\n"
        f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
    )

    print(str(time.time())+'   return transcribe '+ text )
    
    return text, transcription_time_output

@spaces.GPU
def handle_upload_audio(audio_path,model_name,old_transcription=''):
    print('old_trans:' + old_transcription)
    (text,transcription_time_output)=transcribe(audio_path,model_name)
    return text+'\n\n'+old_transcription, transcription_time_output

def handle_base64_audio(base64_data, model_name, old_transcription=''):
    # Decode base64 data and save it as a temporary audio file
    binary_data = base64.b64decode(base64_data)
    audio_path = "temp_audio.wav"
    with open(audio_path, "wb") as f:
        f.write(binary_data)

    # Transcribe the audio file
    (text, transcription_time_output) = transcribe(audio_path, model_name)

    # Remove the temporary audio file
    import os
    os.remove(audio_path)

    return text + '\n\n' + old_transcription, transcription_time_output


graudio=gr.Audio(type="filepath",show_download_button=True)
grmodel_textbox=gr.Textbox(
            label="Model Name",
            value=DEFAULT_MODEL_NAME,
            placeholder="Enter the model name",
            info="Some available models: distil-whisper/distil-large-v3   distil-whisper/distil-medium.en   Systran/faster-distil-whisper-large-v3    Systran/faster-whisper-large-v3    Systran/faster-whisper-medium    openai/whisper-tiny,   openai/whisper-base,   openai/whisper-medium,    openai/whisper-large-v3",
        )
groutputs=[gr.TextArea(label="Transcription",elem_id="transcription_textarea",interactive=True,lines=20,show_copy_button=True), 
           gr.TextArea(label="Transcription Info",interactive=True,show_copy_button=True)]

mf_transcribe = gr.Interface(
    fn=handle_upload_audio,
    inputs=[
        graudio, #"numpy" or filepath
        #gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
        grmodel_textbox,
    ],
    outputs=groutputs,
    theme="huggingface",
    title="Whisper Transcription",
    description=(
        "Scroll to Bottom to show system status.  "
        "Transcribe long-form microphone or audio file after uploaded audio! "
        "Notice: the space need some time to get a gpu to run, so there may be a delay "
    ),
    allow_flagging="never",
)


grmodel_textbox_64=gr.Textbox(
            label="Model Name",
            value=DEFAULT_MODEL_NAME,
            placeholder="Enter the model name",
            info="Some available models: distil-whisper/distil-large-v3   distil-whisper/distil-medium.en   Systran/faster-distil-whisper-large-v3    Systran/faster-whisper-large-v3    Systran/faster-whisper-medium    openai/whisper-tiny,   openai/whisper-base,   openai/whisper-medium,    openai/whisper-large-v3",
        )
groutputs_64=[gr.TextArea(label="Transcription 64",elem_id="transcription_textarea_64",interactive=True,lines=20,show_copy_button=True), 
           gr.TextArea(label="Transcription Info 64",interactive=True,show_copy_button=True)]


base_transcribe= gr.Interface(
                fn=handle_base64_audio,
                inputs=[
                    gr.Textbox(label="Base64 Audio Data URL", placeholder="Enter the base64 audio data URL"),
                    grmodel_textbox_64,
                ],
                outputs=groutputs_64,
            )


demo = gr.Blocks()


@spaces.GPU
def onload():
    while True:
        print('onload loop excution')
        time.sleep(2)
    return update_status();
    

with demo:
    tabbed_interface = gr.TabbedInterface(
        [
            mf_transcribe,
            base_transcribe
        ],
        ["Audio", "Base64 Audio"],
    )

    with gr.Row():
        refresh_button = gr.Button("Refresh Status")

    sys_status_output = gr.Textbox(label="System Status", interactive=False)

    # Link the refresh button to the refresh_status function
    refresh_button.click(refresh_status, None, [sys_status_output])

    graudio.stop_recording(handle_upload_audio, inputs=[graudio, grmodel_textbox, groutputs[0]], outputs=groutputs)
    graudio.upload(handle_upload_audio, inputs=[graudio, grmodel_textbox, groutputs[0]], outputs=groutputs)
    # Load the initial status using update_status function
    demo.load(onload, inputs=None, outputs=[sys_status_output], queue=False)

    

# Launch the Gradio app
demo.launch(share=True)

print('launched\n\n')