Spaces:
Running
Running
File size: 6,458 Bytes
9021b39 dfc6dc5 a1b1b32 dfc6dc5 a1b1b32 dfc6dc5 a1b1b32 7a9ec21 693929a 9021b39 dfc6dc5 a1b1b32 dfc6dc5 693929a dfc6dc5 4969145 693929a a1b1b32 4969145 693929a 4969145 6a9f851 22b6727 4969145 9021b39 693929a 4969145 a1b1b32 22b6727 a1b1b32 693929a dfc6dc5 9021b39 dfc6dc5 9021b39 dfc6dc5 9021b39 dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 4969145 dfc6dc5 4969145 693929a 4969145 693929a 89acc00 693929a dfc6dc5 693929a a1b1b32 693929a dfc6dc5 a1b1b32 dfc6dc5 693929a dfc6dc5 4969145 7a9ec21 4969145 dfc6dc5 a1b1b32 4969145 a1b1b32 dfc6dc5 9e3188b dfc6dc5 e252ee6 dfc6dc5 e252ee6 dfc6dc5 e252ee6 4969145 dfc6dc5 89acc00 4969145 a1b1b32 e252ee6 4969145 e252ee6 dfc6dc5 f49d6b1 6a0f437 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import glob
import gradio as gr
import openai
import os
from dotenv import load_dotenv
import phoenix as px
import llama_index
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.core.chat_engine.types import ChatMode
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.extractors import TitleExtractor
from llama_index.core.ingestion import IngestionPipeline
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.llms.ollama import Ollama
from chat_template import CHAT_TEXT_QA_PROMPT, TEXT_QA_SYSTEM_PROMPT
from schemas import ChatbotVersion, ServiceProvider
from chatbot import Chatbot, IndexBuilder
from custom_io import MarkdownReader, UnstructuredReader, default_file_metadata_func
from qdrant import client as qdrantClient
from llama_index.core import set_global_service_context
from service_provider_config import get_service_provider_config
load_dotenv()
# initial service setup
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
# llama_index.set_global_handler("wandb", run_args={"project": "llamaindex"})
openai.api_key = os.getenv("OPENAI_API_KEY")
IS_LOAD_FROM_VECTOR_STORE = True
VDB_COLLECTION_NAME = "demo-v7"
MODEL_NAME = ChatbotVersion.CHATGPT_4O.value
CHUNK_SIZE = 8191
LLM, EMBED_MODEL = get_service_provider_config(
service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
# LLM = Ollama(model="llama3.1:latest", request_timeout=60.0, context_window=10000)
Settings.embed_model = EMBED_MODEL
Settings.llm = LLM
class AwesumIndexBuilder(IndexBuilder):
def _load_doucments(self):
directory = "./awesumcare_data/awesumcare_manual_data"
dir_reader = SimpleDirectoryReader(directory, file_extractor={
".pdf": UnstructuredReader(),
".docx": UnstructuredReader(),
".pptx": UnstructuredReader(),
".md": MarkdownReader()
},
recursive=True,
exclude=["*.png", "*.pptx", "*.docx", "*.pdf"],
file_metadata=default_file_metadata_func)
self.documents = dir_reader.load_data()
print(f"Loaded {len(self.documents)} docs")
def _setup_service_context(self):
super()._setup_service_context()
def _setup_vector_store(self):
self.vector_store = QdrantVectorStore(
client=qdrantClient, collection_name=self.vdb_collection_name)
super()._setup_vector_store()
def _setup_index(self):
super()._setup_index()
if self.is_load_from_vector_store:
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
print("set up index from vector store")
return
pipeline = IngestionPipeline(
transformations=[
self.embed_model,
],
vector_store=self.vector_store,
)
pipeline.run(documents=self.documents, show_progress=True)
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
class AwesumCareToolChatbot(Chatbot):
DENIED_ANSWER_PROMPT = ""
SYSTEM_PROMPT = ""
CHAT_EXAMPLES = [
"什麼是安心三寶?",
"點樣立平安紙?",
"甚麼是⾒證?",
"訂立每份⽂件需要多少錢以及付款⽅法?",
"通過安⼼三寶製作的⽂件有法律效⼒嗎?",
]
def _setup_observer(self):
pass
def _setup_index(self):
super()._setup_index()
def _setup_query_engine(self):
super()._setup_query_engine()
self.query_engine = self.index.as_query_engine(
text_qa_template=CHAT_TEXT_QA_PROMPT)
def _setup_tools(self):
from llama_index.core.tools import QueryEngineTool
self.tools = QueryEngineTool.from_defaults(
query_engine=self.query_engine)
return super()._setup_tools()
def _setup_chat_engine(self):
from llama_index.agent.openai import OpenAIAgent
self.chat_engine = OpenAIAgent.from_tools(
tools=[self.tools],
llm=LLM,
similarity_top_k=1,
verbose=True
)
print("set up agent as chat engine")
super()._setup_chat_engine()
class AweSumCareContextChatbot(AwesumCareToolChatbot):
def _setup_query_engine(self):
pass
def _setup_tools(self):
pass
def _setup_chat_engine(self):
self.chat_engine = self.index.as_chat_engine(
chat_mode=ChatMode.CONTEXT,
similarity_top_k=5,
system_prompt=TEXT_QA_SYSTEM_PROMPT.content,
text_qa_template=CHAT_TEXT_QA_PROMPT)
class AweSumCareSimpleChatbot(AwesumCareToolChatbot):
def _setup_query_engine(self):
pass
def _setup_tools(self):
pass
def _setup_chat_engine(self):
self.chat_engine = self.index.as_chat_engine(
chat_mode=ChatMode.SIMPLE)
model_name = MODEL_NAME
index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
embed_model=EMBED_MODEL,
is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
# gpt-3.5-turbo-1106, gpt-4-1106-preview
# awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder)
awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
# awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
chatbot = gr.Chatbot(height=500)
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("# Awesum Care demo")
with gr.Tab("With relevant context sent to system prompt"):
context_interface = gr.ChatInterface(
awesum_chatbot_context.stream_chat,
examples=AwesumCareToolChatbot.CHAT_EXAMPLES,
chatbot=chatbot
)
# gr.Markdown("instructions:\n"
# "\nUsing model gpt-4-preview-1106, the most advanced model now in the market.\n"
# "\n(Note that it can be much slower than gpt-3.5, openai's api can be unstable sometimes.)\n"
# )
demo.queue(default_concurrency_limit=None)
demo.launch(share=False)
|