Spaces:
Running
Running
File size: 6,082 Bytes
dfc6dc5 4969145 dfc6dc5 a1b1b32 dfc6dc5 693929a 4969145 693929a 4969145 693929a dfc6dc5 4969145 dfc6dc5 693929a 4969145 dfc6dc5 693929a dfc6dc5 4969145 dfc6dc5 4969145 dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 693929a dfc6dc5 4969145 a5bc86d dfc6dc5 4969145 dfc6dc5 4969145 dfc6dc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
from enum import Enum
import logging
from typing import List
import os
import re
from typing import List
from dotenv import load_dotenv
from openai import OpenAI
import phoenix as px
import llama_index
from llama_index.core.llms import ChatMessage, MessageRole
load_dotenv()
class IndexBuilder:
def __init__(self, vdb_collection_name, embed_model, is_load_from_vector_store=False):
self.documents = None
self.vdb_collection_name = vdb_collection_name
self.embed_model = embed_model
self.index = None
self.is_load_from_vector_store = is_load_from_vector_store
self.build_index()
def _load_doucments(self):
pass
def _setup_service_context(self):
print("Using global service context...")
def _setup_vector_store(self):
print("Setup vector store...")
def _setup_index(self):
if not self.is_load_from_vector_store and self.documents is None:
raise ValueError("No documents provided for index building.")
print("Building Index")
def build_index(self):
if self.is_load_from_vector_store:
self._setup_service_context()
self._setup_vector_store()
self._setup_index()
return
self._load_doucments()
self._setup_service_context()
self._setup_vector_store()
self._setup_index()
class Chatbot:
SYSTEM_PROMPT = ""
DENIED_ANSWER_PROMPT = ""
CHAT_EXAMPLES = []
def __init__(self, model_name, index_builder: IndexBuilder, llm=None):
self.model_name = model_name
self.index_builder = index_builder
self.llm = llm
self.documents = None
self.index = None
self.chat_engine = None
self.service_context = None
self.vector_store = None
self.tools = None
self._setup_logger()
self._setup_chatbot()
def _setup_logger(self):
logs_dir = 'logs'
if not os.path.exists(logs_dir):
os.makedirs(logs_dir) # Step 3: Create logs directory
logging.basicConfig(
filename=os.path.join(logs_dir, 'chatbot.log'),
filemode='a',
format='%(asctime)s - %(levelname)s - %(message)s',
level=logging.INFO
)
self.logger = logging.getLogger(__name__)
def _setup_chatbot(self):
# self._setup_observer()
self._setup_index()
self._setup_query_engine()
self._setup_tools()
self._setup_chat_engine()
def _setup_observer(self):
px.launch_app()
llama_index.set_global_handler("arize_phoenix")
def _setup_index(self):
self.index = self.index_builder.index
print("Inherited index builder")
def _setup_query_engine(self):
if self.index is None:
raise ValueError("No index built")
pass
print("Setup query engine...")
def _setup_tools(self):
pass
print("Setup tools...")
def _setup_chat_engine(self):
if self.index is None:
raise ValueError("No index built")
pass
print("Setup chat engine...")
def stream_chat(self, message, history):
self.logger.info(history)
self.logger.info(self.convert_to_chat_messages(history))
if len(history) > 10:
yield "Thank you for using AweSumCare. I'm sorry I can't answer your question now, but I'm still learning. Please try to ask me something else.\n感謝使用安心三寶。現時未能回答你的問題,請稍後再試。"
return
response = self.chat_engine.stream_chat(
message, chat_history=self.convert_to_chat_messages(history)
)
# Stream tokens as they are generated
partial_message = ""
for token in response.response_gen:
partial_message += token
yield partial_message
def convert_to_chat_messages(self, history: List[List[str]]) -> List[ChatMessage]:
chat_messages = [ChatMessage(
role=MessageRole.SYSTEM, content=self.SYSTEM_PROMPT)]
for conversation in history[-3:]:
for index, message in enumerate(conversation):
role = MessageRole.USER if index % 2 == 0 else MessageRole.ASSISTANT
clean_message = re.sub(
r"\n \n\n---\n\n參考: \n.*$", "", message, flags=re.DOTALL)
chat_messages.append(ChatMessage(
role=role, content=clean_message.strip()))
return chat_messages
def predict_with_rag(self, message, history):
return self.stream_chat(message, history)
# barebone chatgpt methods, shared across all chatbot instance
def _invoke_chatgpt(self, history, message, is_include_system_prompt=False):
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
history_openai_format = []
if is_include_system_prompt:
history_openai_format.append(
{"role": "system", "content": self.SYSTEM_PROMPT})
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append(
{"role": "assistant", "content": assistant})
history_openai_format.append({"role": "user", "content": message})
stream = openai_client.chat.completions.create(
model=self.model_name,
messages=history_openai_format,
temperature=1.0,
stream=True)
partial_message = ""
for part in stream:
partial_message += part.choices[0].delta.content or ""
yield partial_message
# For 'With Prompt Wrapper' - Add system prompt, no Pinecone
def predict_with_prompt_wrapper(self, message, history):
yield from self._invoke_chatgpt(history, message, is_include_system_prompt=True)
# For 'Vanilla ChatGPT' - No system prompt
def predict_vanilla_chatgpt(self, message, history):
yield from self._invoke_chatgpt(history, message)
|