File size: 11,339 Bytes
d512d2d 58629f0 f4a098d 123ce74 f4a098d c7e44c9 0704646 c7e44c9 67f7621 c7e44c9 9977893 e29868a 9977893 c7e44c9 9977893 f4a098d e29868a 0704646 f4a098d 0704646 ed19e77 0704646 ed19e77 0704646 e29868a 123ce74 e29868a 123ce74 e29868a 123ce74 1a4fad6 e29868a 123ce74 1a4fad6 9977893 e29868a c7e44c9 ef15204 c7e44c9 ef15204 c7e44c9 ee1c835 c7e44c9 0e30c54 c7e44c9 0e30c54 c7e44c9 ee1c835 c7e44c9 ee1c835 c7e44c9 9977893 123ce74 9977893 1a4fad6 94a0793 9977893 f4a098d ed19e77 f4a098d ed19e77 f4a098d ee1c835 9977893 c7e44c9 c003bbb c7e44c9 d512d2d ed19e77 c7e44c9 d512d2d c7e44c9 c4d6746 c7e44c9 314e5bd c4d6746 c7e44c9 83143d1 c7e44c9 9977893 c7e44c9 ed19e77 c4d6746 ed19e77 c4d6746 c7e44c9 123ce74 67f7621 35f4425 67f7621 c7e44c9 5513bbd 9977893 f4a098d 9977893 ed19e77 1a4fad6 ed19e77 123ce74 5513bbd 67f7621 94a0793 67f7621 ea113a7 67f7621 e3173bf b73e3e9 e3173bf 5513bbd bd0b4a3 c4d6746 bd0b4a3 ed19e77 bd0b4a3 ffa92d9 5513bbd ffa92d9 5513bbd c7e44c9 5513bbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
#!/usr/bin/env python3
# Copyright 2023 Dmitry Ustalov
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__author__ = 'Dmitry Ustalov'
__license__ = 'Apache 2.0'
from collections.abc import Callable
from functools import partial
from typing import BinaryIO, cast
import gradio as gr
import networkx as nx
import numpy as np
import numpy.typing as npt
import pandas as pd
import plotly.express as px
from plotly.graph_objects import Figure
def visualize(df_pairwise: pd.DataFrame) -> Figure:
fig = px.imshow(df_pairwise, color_continuous_scale='RdBu', text_auto='.2f')
fig.update_layout(xaxis_title='Loser', yaxis_title='Winner', xaxis_side='top')
fig.update_traces(hovertemplate='Winner: %{y}<br>Loser: %{x}<br>Fraction of Wins: %{z}<extra></extra>')
return fig
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-bradley_terry-py
def bradley_terry(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float64]:
M = wins + .5 * ties
T = M.T + M
active = T > 0
w = M.sum(axis=1)
Z = np.zeros_like(M, dtype=float)
p = np.ones(M.shape[0])
p_new = p.copy()
converged, iterations = False, 0
while not converged:
iterations += 1
P = np.broadcast_to(p, M.shape)
Z[active] = T[active] / (P[active] + P.T[active])
p_new[:] = w
p_new /= Z.sum(axis=0)
p_new /= p_new.sum()
converged = bool(np.linalg.norm(p_new - p) < tolerance) or (iterations >= limit)
p[:] = p_new
return p
def centrality(algorithm: Callable[[nx.DiGraph], dict[int, float]],
wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64]) -> npt.NDArray[np.float64]:
A = wins + .5 * ties
G = nx.from_numpy_array(A, create_using=nx.DiGraph)
scores: dict[int, float] = algorithm(G)
p = np.array([scores[i] for i in range(len(G))])
return p
def counting(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
M = wins + .5 * ties
return cast(npt.NDArray[np.float64], M.sum(axis=1))
def eigen(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
algorithm = partial(nx.algorithms.eigenvector_centrality_numpy, max_iter=limit, tol=tolerance)
return centrality(algorithm, wins, ties)
def pagerank(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
algorithm = partial(nx.algorithms.pagerank, max_iter=limit, tol=tolerance)
return centrality(algorithm, wins, ties)
# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
def newman(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float64]:
pi, v = np.ones(wins.shape[0]), .5
converged, iterations = False, 0
while not converged:
iterations += 1
v_numerator = np.sum(
ties * (pi[:, np.newaxis] + pi) /
(pi[:, np.newaxis] + pi + 2 * v * np.sqrt(pi[:, np.newaxis] * pi))
) / 2
v_denominator = np.sum(
wins * 2 * np.sqrt(pi[:, np.newaxis] * pi) /
(pi[:, np.newaxis] + pi + 2 * v * np.sqrt(pi[:, np.newaxis] * pi))
)
v = v_numerator / v_denominator
v = np.nan_to_num(v, copy=False, nan=tolerance)
pi_old = pi.copy()
pi_numerator = np.sum(
(wins + ties / 2) * (pi + v * np.sqrt(pi[:, np.newaxis] * pi)) /
(pi[:, np.newaxis] + pi + 2 + v * np.sqrt(pi[:, np.newaxis] * pi)),
axis=1
)
pi_denominator = np.sum(
(wins + ties / 2) * (1 + v * np.sqrt(pi[:, np.newaxis] * pi)) /
(pi[:, np.newaxis] + pi + 2 + v * np.sqrt(pi[:, np.newaxis] * pi)),
axis=0
)
pi = pi_numerator / pi_denominator
pi = np.nan_to_num(pi, copy=False, nan=tolerance)
converged = np.allclose(pi / (pi + 1), pi_old / (pi_old + 1),
rtol=tolerance, atol=tolerance) or (iterations >= limit)
return pi
ALGORITHMS = {
'Counting': counting,
'Bradley-Terry (1952)': bradley_terry,
'Eigenvector (1986)': eigen,
'PageRank (1998)': pagerank,
'Newman (2023)': newman,
}
def largest_strongly_connected_component(df: pd.DataFrame) -> set[str]:
G = nx.from_pandas_edgelist(df, source='left', target='right', create_using=nx.DiGraph)
H = nx.from_pandas_edgelist(df[df['winner'] == 'tie'], source='right', target='left', create_using=nx.DiGraph)
F = nx.compose(G, H)
largest = max(nx.strongly_connected_components(F), key=len)
return cast(set[str], largest)
def handler(file: BinaryIO, algorithm: str, filtered: bool, truncated: bool, seed: int) -> tuple[pd.DataFrame, Figure]:
if file is None:
raise gr.Error('File must be uploaded')
if algorithm not in ALGORITHMS:
raise gr.Error(f'Unknown algorithm: {algorithm}')
try:
df = pd.read_csv(file.name, dtype=str)
except ValueError as e:
raise gr.Error(f'Parsing error: {e}')
if not pd.Series(['left', 'right', 'winner']).isin(df.columns).all():
raise gr.Error('Columns must exist: left, right, winner')
if not df['winner'].isin(pd.Series(['left', 'right', 'tie'])).all():
raise gr.Error('Allowed winner values: left, right, tie')
df = df[['left', 'right', 'winner']]
df.dropna(axis=0, inplace=True)
df.loc[df['winner'] == 'right', ['left', 'right']] = df.loc[df['winner'] == 'right', ['right', 'left']].values
df.loc[df['winner'] == 'right', 'winner'] = 'left'
if filtered:
largest = largest_strongly_connected_component(df)
df.drop(df[~(df['left'].isin(largest) & df['right'].isin(largest))].index, inplace=True)
index = pd.Index(largest, name='item')
else:
index = pd.Index(np.unique(df[['left', 'right']].values), name='item')
df_wins = pd.pivot_table(df[df['winner'] != 'tie'],
index='left', columns='right', values='winner',
aggfunc='count', fill_value=0)
df_wins = df_wins.reindex(labels=index, columns=index, fill_value=0, copy=False)
df_ties = pd.pivot_table(df[df['winner'] == 'tie'],
index='left', columns='right', values='winner',
aggfunc='count', fill_value=0)
df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0, copy=False)
wins = df_wins.to_numpy(dtype=int)
ties = df_ties.to_numpy(dtype=int)
ties += ties.T
assert wins.shape == ties.shape, 'wins and ties shapes are different'
scores = ALGORITHMS[algorithm](wins, ties, seed=seed)
df_result = pd.DataFrame(data={'score': scores}, index=index)
df_result['pairs'] = pd.Series(0, dtype=int, index=index).add(
df.groupby('left')['left'].count(), fill_value=0
).add(
df.groupby('right')['right'].count(), fill_value=0
).astype(int)
df_result['rank'] = df_result['score'].rank(na_option='bottom', ascending=False).astype(int)
df_result.fillna(np.NINF, inplace=True)
df_result.sort_values(by=['rank', 'score'], ascending=[True, False], inplace=True)
df_result.reset_index(inplace=True)
if truncated:
df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
df_result = df_result[~df_result.index.duplicated(keep='last')]
df_pairwise = pd.DataFrame(data=scores[:, np.newaxis] / (scores + scores[:, np.newaxis]),
index=index, columns=index)
df_pairwise = df_pairwise.reindex(labels=df_result['item'], columns=df_result['item'], copy=False)
fig = visualize(df_pairwise)
return df_result, fig
def main() -> None:
iface = gr.Interface(
fn=handler,
inputs=[
gr.File(
file_types=['.tsv', '.csv'],
label='Comparisons'
),
gr.Dropdown(
choices=cast(list[str], ALGORITHMS),
value='Bradley-Terry (1952)',
label='Algorithm'
),
gr.Checkbox(
value=False,
label='Largest SCC',
info='Bradley-Terry, Eigenvector, and Newman algorithms require the comparison graph '
'to be strongly-connected. '
'This option keeps only the largest strongly-connected component (SCC) of the input graph. '
'Some items might be missing as a result of this filtering.'
),
gr.Checkbox(
value=False,
label='Truncate Output',
info='Perform the entire computation but output only five head and five tail items, '
'avoiding overlap.'
),
gr.Number(
label='Seed',
precision=0
)
],
outputs=[
gr.Dataframe(
headers=['item', 'score', 'pairs', 'rank'],
label='Ranking'
),
gr.Plot(
label='Pairwise Chances of Winning the Comparison'
)
],
examples=[
['food.csv', 'Counting', False, False, 0],
['food.csv', 'Bradley-Terry (1952)', False, False, 0],
['food.csv', 'Eigenvector (1986)', False, False, 0],
['food.csv', 'PageRank (1998)', False, False, 0],
['food.csv', 'Newman (2023)', False, False, 0],
['llmfao.csv', 'Bradley-Terry (1952)', False, True, 0]
],
title='Pair2Rank: Turn Your Side-by-Side Comparisons into Ranking!',
description='''
This easy-to-use tool transforms pairwise comparisons (aka side-by-side) to a meaningful ranking of items.
As an input, it expects a comma-separated (CSV) file with a header containing the following columns:
- `left`: the first compared item
- `right`: the second compared item
- `winner`: the label indicating the winning item
Possible values for `winner` are `left`, `right`, or `tie`. The provided examples might be a good starting point.
As the output, this tool provides a table with items, their estimated scores, and ranks.
'''.strip(),
article='''
Read more about Pair2Rank at <https://evalovernite.substack.com/p/llmfao-human-ranking>.
'''.strip(),
allow_flagging='never'
)
iface.launch()
if __name__ == '__main__':
main()
|