File size: 11,339 Bytes
d512d2d
 
58629f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a098d
123ce74
f4a098d
c7e44c9
 
0704646
c7e44c9
 
 
67f7621
 
 
 
 
 
 
 
 
c7e44c9
 
9977893
e29868a
 
9977893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7e44c9
9977893
 
 
 
 
 
 
 
 
 
 
f4a098d
e29868a
0704646
 
 
 
f4a098d
0704646
ed19e77
0704646
ed19e77
0704646
 
e29868a
 
123ce74
 
e29868a
123ce74
 
e29868a
 
123ce74
 
 
1a4fad6
 
e29868a
 
123ce74
 
 
1a4fad6
 
9977893
e29868a
 
 
c7e44c9
 
 
 
 
 
 
ef15204
 
c7e44c9
 
 
ef15204
 
c7e44c9
 
 
ee1c835
c7e44c9
 
 
 
 
0e30c54
c7e44c9
 
 
 
 
0e30c54
c7e44c9
 
 
 
ee1c835
c7e44c9
ee1c835
 
c7e44c9
 
 
 
9977893
123ce74
9977893
1a4fad6
94a0793
9977893
 
 
 
f4a098d
ed19e77
 
 
 
f4a098d
ed19e77
 
f4a098d
ee1c835
 
 
9977893
 
 
c7e44c9
 
 
 
 
 
 
 
 
 
 
 
 
c003bbb
c7e44c9
d512d2d
 
 
ed19e77
 
 
 
 
 
 
 
c7e44c9
d512d2d
c7e44c9
 
c4d6746
c7e44c9
 
314e5bd
 
c4d6746
c7e44c9
83143d1
 
c7e44c9
 
9977893
 
 
c7e44c9
 
ed19e77
 
 
 
 
 
 
c4d6746
ed19e77
c4d6746
c7e44c9
 
 
123ce74
 
 
 
67f7621
 
35f4425
67f7621
 
 
 
c7e44c9
 
5513bbd
 
 
 
 
 
 
 
9977893
f4a098d
9977893
 
 
ed19e77
 
 
1a4fad6
 
ed19e77
 
 
123ce74
 
 
 
 
 
5513bbd
 
 
 
 
67f7621
 
94a0793
67f7621
 
 
ea113a7
67f7621
 
e3173bf
b73e3e9
 
 
 
 
 
e3173bf
5513bbd
 
bd0b4a3
 
c4d6746
bd0b4a3
 
 
 
 
ed19e77
bd0b4a3
 
ffa92d9
5513bbd
ffa92d9
 
5513bbd
 
 
 
 
c7e44c9
5513bbd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#!/usr/bin/env python3

# Copyright 2023 Dmitry Ustalov
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__author__ = 'Dmitry Ustalov'
__license__ = 'Apache 2.0'

from collections.abc import Callable
from functools import partial
from typing import BinaryIO, cast

import gradio as gr
import networkx as nx
import numpy as np
import numpy.typing as npt
import pandas as pd
import plotly.express as px
from plotly.graph_objects import Figure


def visualize(df_pairwise: pd.DataFrame) -> Figure:
    fig = px.imshow(df_pairwise, color_continuous_scale='RdBu', text_auto='.2f')
    fig.update_layout(xaxis_title='Loser', yaxis_title='Winner', xaxis_side='top')
    fig.update_traces(hovertemplate='Winner: %{y}<br>Loser: %{x}<br>Fraction of Wins: %{z}<extra></extra>')
    return fig


# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-bradley_terry-py
def bradley_terry(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
                  seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float64]:
    M = wins + .5 * ties

    T = M.T + M
    active = T > 0

    w = M.sum(axis=1)

    Z = np.zeros_like(M, dtype=float)

    p = np.ones(M.shape[0])
    p_new = p.copy()

    converged, iterations = False, 0

    while not converged:
        iterations += 1

        P = np.broadcast_to(p, M.shape)

        Z[active] = T[active] / (P[active] + P.T[active])

        p_new[:] = w
        p_new /= Z.sum(axis=0)
        p_new /= p_new.sum()

        converged = bool(np.linalg.norm(p_new - p) < tolerance) or (iterations >= limit)

        p[:] = p_new

    return p


def centrality(algorithm: Callable[[nx.DiGraph], dict[int, float]],
               wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64]) -> npt.NDArray[np.float64]:
    A = wins + .5 * ties

    G = nx.from_numpy_array(A, create_using=nx.DiGraph)

    scores: dict[int, float] = algorithm(G)

    p = np.array([scores[i] for i in range(len(G))])

    return p


def counting(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
             seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
    M = wins + .5 * ties

    return cast(npt.NDArray[np.float64], M.sum(axis=1))


def eigen(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
          seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
    algorithm = partial(nx.algorithms.eigenvector_centrality_numpy, max_iter=limit, tol=tolerance)

    return centrality(algorithm, wins, ties)


def pagerank(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
             seed: int = 0, tolerance: float = 10e-6, limit: int = 100) -> npt.NDArray[np.float64]:
    algorithm = partial(nx.algorithms.pagerank, max_iter=limit, tol=tolerance)

    return centrality(algorithm, wins, ties)


# https://gist.github.com/dustalov/41678b70c40ba5a55430fa5e77b121d9#file-newman-py
def newman(wins: npt.NDArray[np.int64], ties: npt.NDArray[np.int64],
           seed: int = 0, tolerance: float = 10e-6, limit: int = 20) -> npt.NDArray[np.float64]:
    pi, v = np.ones(wins.shape[0]), .5

    converged, iterations = False, 0

    while not converged:
        iterations += 1

        v_numerator = np.sum(
            ties * (pi[:, np.newaxis] + pi) /
            (pi[:, np.newaxis] + pi + 2 * v * np.sqrt(pi[:, np.newaxis] * pi))
        ) / 2

        v_denominator = np.sum(
            wins * 2 * np.sqrt(pi[:, np.newaxis] * pi) /
            (pi[:, np.newaxis] + pi + 2 * v * np.sqrt(pi[:, np.newaxis] * pi))
        )

        v = v_numerator / v_denominator
        v = np.nan_to_num(v, copy=False, nan=tolerance)

        pi_old = pi.copy()

        pi_numerator = np.sum(
            (wins + ties / 2) * (pi + v * np.sqrt(pi[:, np.newaxis] * pi)) /
            (pi[:, np.newaxis] + pi + 2 + v * np.sqrt(pi[:, np.newaxis] * pi)),
            axis=1
        )

        pi_denominator = np.sum(
            (wins + ties / 2) * (1 + v * np.sqrt(pi[:, np.newaxis] * pi)) /
            (pi[:, np.newaxis] + pi + 2 + v * np.sqrt(pi[:, np.newaxis] * pi)),
            axis=0
        )

        pi = pi_numerator / pi_denominator
        pi = np.nan_to_num(pi, copy=False, nan=tolerance)

        converged = np.allclose(pi / (pi + 1), pi_old / (pi_old + 1),
                                rtol=tolerance, atol=tolerance) or (iterations >= limit)

    return pi


ALGORITHMS = {
    'Counting': counting,
    'Bradley-Terry (1952)': bradley_terry,
    'Eigenvector (1986)': eigen,
    'PageRank (1998)': pagerank,
    'Newman (2023)': newman,
}


def largest_strongly_connected_component(df: pd.DataFrame) -> set[str]:
    G = nx.from_pandas_edgelist(df, source='left', target='right', create_using=nx.DiGraph)
    H = nx.from_pandas_edgelist(df[df['winner'] == 'tie'], source='right', target='left', create_using=nx.DiGraph)
    F = nx.compose(G, H)
    largest = max(nx.strongly_connected_components(F), key=len)
    return cast(set[str], largest)


def handler(file: BinaryIO, algorithm: str, filtered: bool, truncated: bool, seed: int) -> tuple[pd.DataFrame, Figure]:
    if file is None:
        raise gr.Error('File must be uploaded')

    if algorithm not in ALGORITHMS:
        raise gr.Error(f'Unknown algorithm: {algorithm}')

    try:
        df = pd.read_csv(file.name, dtype=str)
    except ValueError as e:
        raise gr.Error(f'Parsing error: {e}')

    if not pd.Series(['left', 'right', 'winner']).isin(df.columns).all():
        raise gr.Error('Columns must exist: left, right, winner')

    if not df['winner'].isin(pd.Series(['left', 'right', 'tie'])).all():
        raise gr.Error('Allowed winner values: left, right, tie')

    df = df[['left', 'right', 'winner']]

    df.dropna(axis=0, inplace=True)

    df.loc[df['winner'] == 'right', ['left', 'right']] = df.loc[df['winner'] == 'right', ['right', 'left']].values
    df.loc[df['winner'] == 'right', 'winner'] = 'left'

    if filtered:
        largest = largest_strongly_connected_component(df)

        df.drop(df[~(df['left'].isin(largest) & df['right'].isin(largest))].index, inplace=True)

        index = pd.Index(largest, name='item')
    else:
        index = pd.Index(np.unique(df[['left', 'right']].values), name='item')

    df_wins = pd.pivot_table(df[df['winner'] != 'tie'],
                             index='left', columns='right', values='winner',
                             aggfunc='count', fill_value=0)
    df_wins = df_wins.reindex(labels=index, columns=index, fill_value=0, copy=False)

    df_ties = pd.pivot_table(df[df['winner'] == 'tie'],
                             index='left', columns='right', values='winner',
                             aggfunc='count', fill_value=0)
    df_ties = df_ties.reindex(labels=index, columns=index, fill_value=0, copy=False)

    wins = df_wins.to_numpy(dtype=int)
    ties = df_ties.to_numpy(dtype=int)
    ties += ties.T

    assert wins.shape == ties.shape, 'wins and ties shapes are different'

    scores = ALGORITHMS[algorithm](wins, ties, seed=seed)

    df_result = pd.DataFrame(data={'score': scores}, index=index)

    df_result['pairs'] = pd.Series(0, dtype=int, index=index).add(
        df.groupby('left')['left'].count(), fill_value=0
    ).add(
        df.groupby('right')['right'].count(), fill_value=0
    ).astype(int)

    df_result['rank'] = df_result['score'].rank(na_option='bottom', ascending=False).astype(int)

    df_result.fillna(np.NINF, inplace=True)
    df_result.sort_values(by=['rank', 'score'], ascending=[True, False], inplace=True)
    df_result.reset_index(inplace=True)

    if truncated:
        df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
        df_result = df_result[~df_result.index.duplicated(keep='last')]

    df_pairwise = pd.DataFrame(data=scores[:, np.newaxis] / (scores + scores[:, np.newaxis]),
                               index=index, columns=index)
    df_pairwise = df_pairwise.reindex(labels=df_result['item'], columns=df_result['item'], copy=False)

    fig = visualize(df_pairwise)

    return df_result, fig


def main() -> None:
    iface = gr.Interface(
        fn=handler,
        inputs=[
            gr.File(
                file_types=['.tsv', '.csv'],
                label='Comparisons'
            ),
            gr.Dropdown(
                choices=cast(list[str], ALGORITHMS),
                value='Bradley-Terry (1952)',
                label='Algorithm'
            ),
            gr.Checkbox(
                value=False,
                label='Largest SCC',
                info='Bradley-Terry, Eigenvector, and Newman algorithms require the comparison graph '
                     'to be strongly-connected. '
                     'This option keeps only the largest strongly-connected component (SCC) of the input graph. '
                     'Some items might be missing as a result of this filtering.'
            ),
            gr.Checkbox(
                value=False,
                label='Truncate Output',
                info='Perform the entire computation but output only five head and five tail items, '
                     'avoiding overlap.'
            ),
            gr.Number(
                label='Seed',
                precision=0
            )
        ],
        outputs=[
            gr.Dataframe(
                headers=['item', 'score', 'pairs', 'rank'],
                label='Ranking'
            ),
            gr.Plot(
                label='Pairwise Chances of Winning the Comparison'
            )
        ],
        examples=[
            ['food.csv', 'Counting', False, False, 0],
            ['food.csv', 'Bradley-Terry (1952)', False, False, 0],
            ['food.csv', 'Eigenvector (1986)', False, False, 0],
            ['food.csv', 'PageRank (1998)', False, False, 0],
            ['food.csv', 'Newman (2023)', False, False, 0],
            ['llmfao.csv', 'Bradley-Terry (1952)', False, True, 0]
        ],
        title='Pair2Rank: Turn Your Side-by-Side Comparisons into Ranking!',
        description='''
This easy-to-use tool transforms pairwise comparisons (aka side-by-side) to a meaningful ranking of items.

As an input, it expects a comma-separated (CSV) file with a header containing the following columns:

- `left`: the first compared item
- `right`: the second compared item
- `winner`: the label indicating the winning item

Possible values for `winner` are `left`, `right`, or `tie`. The provided examples might be a good starting point.

As the output, this tool provides a table with items, their estimated scores, and ranks.
        '''.strip(),
        article='''
Read more about Pair2Rank at <https://evalovernite.substack.com/p/llmfao-human-ranking>.
        '''.strip(),
        allow_flagging='never'
    )

    iface.launch()


if __name__ == '__main__':
    main()