File size: 9,039 Bytes
d512d2d
 
58629f0
 
 
 
 
 
 
 
 
 
 
 
 
 
cc521be
 
58629f0
f4a098d
c7e44c9
e94b477
c7e44c9
0704646
c7e44c9
 
67f7621
e94b477
67f7621
 
e94b477
5ebe6d2
67f7621
 
cc521be
 
 
 
 
 
67f7621
c7e44c9
 
832c761
6fd3e87
 
 
 
 
 
 
e94b477
 
9977893
 
832c761
6fd3e87
e94b477
 
9977893
 
832c761
6fd3e87
e94b477
 
9977893
 
832c761
6fd3e87
e94b477
 
9977893
 
832c761
6fd3e87
e94b477
 
c7e44c9
9977893
832c761
6fd3e87
e94b477
 
c7e44c9
 
9977893
cc521be
6fd3e87
cc521be
 
 
 
 
9977893
 
 
e94b477
cc521be
 
e94b477
ed19e77
 
f4a098d
ed19e77
 
cc521be
 
 
 
 
 
ee1c835
cc521be
ee1c835
9977893
cc521be
9977893
c7e44c9
e94b477
c7e44c9
cc521be
c7e44c9
cc521be
 
c7e44c9
cc521be
 
c7e44c9
cc521be
c7e44c9
832c761
d512d2d
ed19e77
e94b477
c7e44c9
832c761
c7e44c9
e94b477
 
c7e44c9
e94b477
c7e44c9
cc521be
6fd3e87
ed19e77
cc521be
 
ed19e77
cc521be
ed19e77
 
cc521be
ed19e77
832c761
 
 
c7e44c9
123ce74
 
cc521be
123ce74
cc521be
e94b477
cc521be
67f7621
 
 
 
c7e44c9
 
5513bbd
 
 
 
 
cc521be
 
5513bbd
9977893
f4a098d
cc521be
 
9977893
ed19e77
 
cc521be
 
 
 
 
ed19e77
123ce74
 
cc521be
 
 
123ce74
5513bbd
67f7621
 
cc521be
 
67f7621
 
cc521be
 
67f7621
e3173bf
cc521be
 
 
 
 
6fd3e87
cc521be
 
e3173bf
cc521be
 
bd0b4a3
 
c4d6746
bd0b4a3
 
 
 
 
ed19e77
bd0b4a3
 
cc521be
 
702877d
e94b477
702877d
 
 
 
 
cc521be
8a1630a
5513bbd
 
 
 
c7e44c9
cc521be
5513bbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python3

# Copyright 2023 Dmitry Ustalov
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__author__ = "Dmitry Ustalov"
__license__ = "Apache 2.0"

from typing import BinaryIO, cast

import evalica
import gradio as gr
import networkx as nx
import numpy as np
import pandas as pd
import plotly.express as px
from evalica import Winner
from plotly.graph_objects import Figure

TOLERANCE, LIMIT = 1e-6, 100


def visualize(df_pairwise: pd.DataFrame) -> Figure:
    fig = px.imshow(df_pairwise, color_continuous_scale="RdBu", text_auto=".2f")

    fig.update_layout(xaxis_title="Loser", yaxis_title="Winner", xaxis_side="top")

    fig.update_traces(hovertemplate="Winner: %{y}<br>Loser: %{x}<br>Fraction of Wins: %{z}<extra></extra>")

    return fig


def counting(xs: "pd.Series[str]", ys: "pd.Series[str]",
             ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.counting(xs, ys, ws)
    return result.scores, result.index


def average_win_rate(xs: "pd.Series[str]", ys: "pd.Series[str]",
                     ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.counting(xs, ys, ws)
    return result.scores, result.index


def bradley_terry(xs: "pd.Series[str]", ys: "pd.Series[str]",
                  ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.bradley_terry(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
    return result.scores, result.index


def elo(xs: "pd.Series[str]", ys: "pd.Series[str]",
        ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.elo(xs, ys, ws)
    return result.scores, result.index


def eigen(xs: "pd.Series[str]", ys: "pd.Series[str]",
          ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.eigen(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
    return result.scores, result.index


def pagerank(xs: "pd.Series[str]", ys: "pd.Series[str]",
             ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.pagerank(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
    return result.scores, result.index


def newman(xs: "pd.Series[str]", ys: "pd.Series[str]",
           ws: "pd.Series[Winner]") -> tuple["pd.Series[str]", dict[str, int]]:  # type: ignore[type-var]
    result = evalica.newman(xs, ys, ws, tolerance=TOLERANCE, limit=LIMIT)
    return result.scores, result.index


ALGORITHMS = {
    "Counting": counting,
    "Average Win Rate": average_win_rate,
    "Bradley-Terry (1952)": bradley_terry,
    "Elo (1960)": elo,
    "Eigenvector (1987)": eigen,
    "PageRank (1998)": pagerank,
    "Newman (2023)": newman,
}


def largest_strongly_connected_component(df_pairs: pd.DataFrame) -> set[str]:
    G = nx.from_pandas_edgelist(df_pairs, source="left", target="right", create_using=nx.DiGraph)
    H = nx.from_pandas_edgelist(df_pairs[df_pairs["winner"] == "tie"], source="right", target="left",
                                create_using=nx.DiGraph)
    F = nx.compose(G, H)
    largest = max(nx.strongly_connected_components(F), key=len)
    return cast(set[str], largest)


def handler(
        file: BinaryIO,
        algorithm: str,
        filtered: bool,
        truncated: bool,
) -> tuple[pd.DataFrame, Figure]:
    if file is None:
        raise gr.Error("File must be uploaded")

    if algorithm not in ALGORITHMS:
        raise gr.Error(f"Unknown algorithm: {algorithm}")

    try:
        df_pairs = pd.read_csv(file.name, dtype=str)
    except ValueError as e:
        raise gr.Error(f"Parsing error: {e}") from e

    if not pd.Series(["left", "right", "winner"]).isin(df_pairs.columns).all():
        raise gr.Error("Columns must exist: left, right, winner")

    if not df_pairs["winner"].isin(pd.Series(["left", "right", "tie"])).all():
        raise gr.Error("Allowed winner values: left, right, tie")

    df_pairs = df_pairs[["left", "right", "winner"]]

    df_pairs = df_pairs.dropna(axis=0)

    if filtered:
        largest = largest_strongly_connected_component(df_pairs)

        df_pairs = df_pairs.drop(df_pairs[~(df_pairs["left"].isin(largest) & df_pairs["right"].isin(largest))].index)

    xs, ys = df_pairs["left"], df_pairs["right"]
    ws = df_pairs["winner"].map({"left": Winner.X, "right": Winner.Y, "tie": Winner.Draw})

    scores, index = ALGORITHMS[algorithm](xs, ys, ws)

    df_result = pd.DataFrame(data={"score": scores}, index=index)
    df_result.index.name = "item"

    df_result["pairs"] = pd.Series(0, dtype=int, index=index).add(
        df_pairs.groupby("left")["left"].count(), fill_value=0,
    ).add(
        df_pairs.groupby("right")["right"].count(), fill_value=0,
    ).astype(int)

    df_result["rank"] = df_result["score"].rank(na_option="bottom", ascending=False).astype(int)

    df_result = df_result.fillna(-np.inf)
    df_result = df_result.sort_values(by=["rank", "score"], ascending=[True, False])
    df_result = df_result.reset_index()

    if truncated:
        df_result = pd.concat((df_result.head(5), df_result.tail(5)), copy=False)
        df_result = df_result[~df_result.index.duplicated(keep="last")]

    pairwise = evalica.pairwise_scores(df_result["score"].to_numpy())

    df_pairwise = pd.DataFrame(data=pairwise, index=df_result["item"], columns=df_result["item"])

    fig = visualize(df_pairwise)

    return df_result, fig


def main() -> None:
    iface = gr.Interface(
        fn=handler,
        inputs=[
            gr.File(
                file_types=[".tsv", ".csv"],
                label="Comparisons",
            ),
            gr.Dropdown(
                choices=cast(list[str], ALGORITHMS),
                value="Bradley-Terry (1952)",
                label="Algorithm",
            ),
            gr.Checkbox(
                value=False,
                label="Largest SCC",
                info="Bradley-Terry, Eigenvector, and Newman algorithms require the comparison graph "
                     "to be strongly-connected. "
                     "This option keeps only the largest strongly-connected component (SCC) of the input graph. "
                     "Some items might be missing as a result of this filtering.",
            ),
            gr.Checkbox(
                value=False,
                label="Truncate Output",
                info="Perform the entire computation but output only five head and five tail items, "
                     "avoiding overlap.",
            ),
        ],
        outputs=[
            gr.Dataframe(
                headers=["item", "score", "pairs", "rank"],
                label="Ranking",
            ),
            gr.Plot(
                label="Pairwise Chances of Winning the Comparison",
            ),
        ],
        examples=[
            ["food.csv", "Counting", False, False],
            ["food.csv", "Bradley-Terry (1952)", False, False],
            ["food.csv", "Eigenvector (1987)", False, False],
            ["food.csv", "PageRank (1998)", False, False],
            ["food.csv", "Newman (2023)", False, False],
            ["llmfao.csv", "Average Win Rate", False, True],
            ["llmfao.csv", "Bradley-Terry (1952)", False, True],
            ["llmfao.csv", "Elo (1960)", False, True],
        ],
        title="Pair2Rank: Turn Your Side-by-Side Comparisons into Ranking!",
        description="""
This easy-to-use tool transforms pairwise comparisons (aka side-by-side) to a meaningful ranking of items.

As an input, it expects a comma-separated (CSV) file with a header containing the following columns:

- `left`: the first compared item
- `right`: the second compared item
- `winner`: the label indicating the winning item

Possible values for `winner` are `left`, `right`, or `tie`. The provided examples might be a good starting point.

As the output, this tool provides a table with items, their estimated scores, and ranks.
        """.strip(),
        article="""
**More Evalica:**

- Paper: TBD ([arXiv](https://arxiv.org/abs/2412.11314))
- GitHub: <https://github.com/dustalov/evalica>
- PyPI: <https://pypi.org/project/evalica/>
- conda-forge: <https://anaconda.org/conda-forge/evalica>
- LLMFAO: <https://evalovernite.substack.com/p/llmfao-human-ranking>
        """.strip(),
        flagging_mode="never",
    )

    iface.launch()


if __name__ == "__main__":
    main()