File size: 8,080 Bytes
893ed02
 
 
 
6e8dad4
 
c069834
2d31353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3de0a
2d31353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a0a03
2d31353
 
95a0a03
4e27e6a
2d31353
4e27e6a
da3de0a
 
2d31353
 
 
 
 
4e27e6a
 
 
 
 
da3de0a
4e27e6a
 
 
 
 
95a0a03
4e27e6a
95a0a03
4e27e6a
95a0a03
 
3d6b7f5
 
4e27e6a
3d6b7f5
 
 
4e27e6a
95a0a03
 
 
6e8dad4
4e27e6a
2d31353
95a0a03
6e8dad4
 
2d31353
 
4e27e6a
da3de0a
95a0a03
8f89163
2d31353
 
 
95a0a03
 
 
4e27e6a
 
 
 
 
95a0a03
 
 
4e27e6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import pandas as pd
import numpy as np

# Seed for reproducibility
np.random.seed(42)

# Function to generate synthetic BreastCancer data
def generate_breast_cancer_data(num_patients):
    primary_keys = [f"PPK_{i+1:05d}" for i in range(num_patients)]
    
    ages = []
    menopausal_status = []
    tumor_sizes = []
    lymph_nodes = []
    grades = []
    stages = []
    er_status = []
    pr_status = []
    her2_status = []
    ki67_level = []
    tnbc_status = []
    brca_mutation = []
    overall_health = []
    genomic_score = []
    treatment = []

    for i in range(num_patients):
        age = int(np.random.normal(60, 10))
        age = max(30, min(age, 80))
        ages.append(age)

        menopausal = "Post-menopausal" if age >= 50 else "Pre-menopausal"
        menopausal_status.append(menopausal)

        tumor_size = round(np.random.lognormal(mean=0.7, sigma=0.5), 2)
        tumor_sizes.append(tumor_size)

        lymph_node = (
            "Positive"
            if (tumor_size > 2.0 and np.random.rand() < 0.6)
            or (tumor_size <= 2.0 and np.random.rand() < 0.3)
            else "Negative"
        )
        lymph_nodes.append(lymph_node)

        grade = np.random.choice([1, 2, 3], p=[0.1, 0.4, 0.5] if tumor_size > 2.0 else [0.3, 0.5, 0.2])
        grades.append(grade)

        if tumor_size <= 2.0 and lymph_node == "Negative":
            stage = "I"
        elif (tumor_size > 2.0 and tumor_size <= 5.0) and lymph_node == "Negative":
            stage = "II"
        elif lymph_node == "Positive" or tumor_size > 5.0:
            stage = "III"
        else:
            stage = "II"
        if np.random.rand() < 0.05:
            stage = "IV"
        stages.append(stage)

        er = np.random.choice(["Positive", "Negative"], p=[0.75, 0.25])
        pr = "Positive" if er == "Positive" and np.random.rand() > 0.1 else "Negative"
        er_status.append(er)
        pr_status.append(pr)

        her2 = np.random.choice(["Positive", "Negative"], p=[0.3, 0.7] if grade == 3 else [0.15, 0.85])
        her2_status.append(her2)

        ki67 = "High" if grade == 3 and np.random.rand() < 0.8 else "Low"
        ki67_level.append(ki67)

        tnbc = "Positive" if er == "Negative" and pr == "Negative" and her2 == "Negative" else "Negative"
        tnbc_status.append(tnbc)

        brca = "Positive" if (tnbc == "Positive" or age < 40) and np.random.rand() < 0.2 else "Negative"
        brca_mutation.append(brca)

        health = "Good" if age < 65 and np.random.rand() < 0.9 else "Poor"
        overall_health.append(health)

        recurrence_score = (
            np.random.choice(["Low", "Intermediate", "High"], p=[0.6, 0.3, 0.1])
            if er == "Positive" and her2 == "Negative"
            else "N/A"
        )
        genomic_score.append(recurrence_score)

        if stage in ["I", "II"]:
            if tnbc == "Positive":
                treat = "Surgery, Chemotherapy, and Radiation Therapy"
            elif er == "Positive" and recurrence_score != "N/A":
                if recurrence_score == "High":
                    treat = "Surgery, Chemotherapy, Hormone Therapy, and Radiation Therapy"
                elif recurrence_score == "Intermediate":
                    treat = "Surgery, Consider Chemotherapy, Hormone Therapy, and Radiation Therapy"
                else:
                    treat = "Surgery, Hormone Therapy, and Radiation Therapy"
            elif her2 == "Positive":
                treat = "Surgery, HER2-Targeted Therapy, Chemotherapy, and Radiation Therapy"
            else:
                treat = "Surgery, Chemotherapy, and Radiation Therapy"
        elif stage == "III":
            treat = (
                "Neoadjuvant Chemotherapy, Surgery, Radiation Therapy"
                + (", HER2-Targeted Therapy" if her2 == "Positive" else "")
                + (", Hormone Therapy" if er == "Positive" else "")
            )
        else:
            treat = "Systemic Therapy (Palliative Care)"
        treatment.append(treat)

    breast_cancer_data = {
        "PRIMARY_PERSON_KEY": primary_keys,
        "Age": ages,
        "Menopausal Status": menopausal_status,
        "Tumor Size (cm)": tumor_sizes,
        "Lymph Node Involvement": lymph_nodes,
        "Tumor Grade": grades,
        "Tumor Stage": stages,
        "ER Status": er_status,
        "PR Status": pr_status,
        "HER2 Status": her2_status,
        "Ki-67 Level": ki67_level,
        "TNBC Status": tnbc_status,
        "BRCA Mutation": brca_mutation,
        "Overall Health": overall_health,
        "Genomic Recurrence Score": genomic_score,
        "Treatment": treatment,
    }

    return pd.DataFrame(breast_cancer_data)

# Function to generate Members from BreastCancer
def generate_members_from_breast_cancer(breast_cancer_df):
    return pd.DataFrame({
        "MEMBER_ID": breast_cancer_df["PRIMARY_PERSON_KEY"],
        "PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
        "MEM_GENDER": ["F"] * len(breast_cancer_df),
        "MEM_ETHNICITY": np.random.choice(["Hispanic", "Non-Hispanic", None], len(breast_cancer_df)),
        "MEM_RACE": np.random.choice(["White", "Black", "Asian", None], len(breast_cancer_df)),
        "MEM_STATE": np.random.choice(["MI", "HI", "CA"], len(breast_cancer_df)),
        "MEM_ZIP3": np.random.randint(100, 999, len(breast_cancer_df)),
    })

# Function to generate Enrollments from BreastCancer
def generate_enrollments_from_breast_cancer(breast_cancer_df):
    return pd.DataFrame({
        "PRIMARY_PERSON_KEY": breast_cancer_df["PRIMARY_PERSON_KEY"],
        "MEM_STAT": np.random.choice(["ACTIVE", "INACTIVE"], len(breast_cancer_df)),
        "PAYER_LOB": np.random.choice(["MEDICAID", "COMMERCIAL", "MEDICARE"], len(breast_cancer_df)),
        "PAYER_TYPE": np.random.choice(["PPO", "HMO"], len(breast_cancer_df)),
        "RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], len(breast_cancer_df)),
    })

# Function to generate Services from BreastCancer
def generate_services(num_services, primary_keys):
    return pd.DataFrame({
        "PRIMARY_PERSON_KEY": np.random.choice(primary_keys, num_services),
        "SERVICE_SETTING": np.random.choice(["OUTPATIENT", "INPATIENT"], num_services),
        "PROC_CODE": np.random.randint(1000, 9999, num_services),
        "SERVICE_DATE": pd.date_range(start="2023-01-01", periods=num_services).to_numpy(),
        "AMOUNT_BILLED": np.random.uniform(500, 15000, num_services),
        "AMOUNT_PAID": np.random.uniform(500, 15000, num_services),
        "CLAIM_STATUS": np.random.choice(["PAID", "DENIED", "PENDING"], num_services),
        "RELATION": np.random.choice(["SUBSCRIBER", "DEPENDENT"], num_services),
    })

# Main Streamlit App
st.title("Synthetic Medical Data Generator")

# Sliders
num_patients = st.slider("Number of Breast Cancer Patients to Generate", 10, 1000, 100)
num_services = st.slider("Number of Services to Generate", 10, 2000, 500)

if st.button("Generate Data"):
    breast_cancer_df = generate_breast_cancer_data(num_patients)
    members_df = generate_members_from_breast_cancer(breast_cancer_df)
    enrollments_df = generate_enrollments_from_breast_cancer(breast_cancer_df)
    services_df = generate_services(num_services, breast_cancer_df["PRIMARY_PERSON_KEY"].tolist())

    # Display and download data
    st.subheader("Breast Cancer Data")
    st.dataframe(breast_cancer_df.head())
    st.download_button("Download Breast Cancer Data", breast_cancer_df.to_csv(index=False), "breast_cancer.csv")

    st.subheader("Members Data")
    st.dataframe(members_df.head())
    st.download_button("Download Members Data", members_df.to_csv(index=False), "members.csv")

    st.subheader("Enrollments Data")
    st.dataframe(enrollments_df.head())
    st.download_button("Download Enrollments Data", enrollments_df.to_csv(index=False), "enrollments.csv")

    st.subheader("Services Data")
    st.dataframe(services_df.head())
    st.download_button("Download Services Data", services_df.to_csv(index=False), "services.csv")