Spaces:
Runtime error
Runtime error
File size: 5,043 Bytes
1f30dbc a86046b 1f30dbc a86046b 1f30dbc a86046b 1f30dbc a86046b 1f30dbc a86046b abf62cb 1f30dbc a86046b 1f30dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import logging
from functools import partial
from typing import Callable, Optional
import pandas as pd
import streamlit as st
from bokeh.plotting import Figure
from embedding_lenses.data import uploaded_file_to_dataframe
from embedding_lenses.dimensionality_reduction import get_tsne_embeddings, get_umap_embeddings
from embedding_lenses.embedding import embed_text, load_model
from embedding_lenses.utils import encode_labels
from sentence_transformers import SentenceTransformer
from perplexity_lenses.data import documents_df_to_sentences_df, hub_dataset_to_dataframe
from perplexity_lenses.perplexity import KenlmModel
from perplexity_lenses.visualization import draw_interactive_scatter_plot
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
EMBEDDING_MODELS = ["distiluse-base-multilingual-cased-v1", "all-mpnet-base-v2", "flax-sentence-embeddings/all_datasets_v3_mpnet-base"]
DIMENSIONALITY_REDUCTION_ALGORITHMS = ["UMAP", "t-SNE"]
LANGUAGES = [
"af",
"ar",
"az",
"be",
"bg",
"bn",
"ca",
"cs",
"da",
"de",
"el",
"en",
"es",
"et",
"fa",
"fi",
"fr",
"gu",
"he",
"hi",
"hr",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"ka",
"kk",
"km",
"kn",
"ko",
"lt",
"lv",
"mk",
"ml",
"mn",
"mr",
"my",
"ne",
"nl",
"no",
"pl",
"pt",
"ro",
"ru",
"uk",
"zh",
]
DOCUMENT_TYPES = ["Whole document", "Sentence"]
SEED = 0
def generate_plot(
df: pd.DataFrame,
text_column: str,
label_column: str,
sample: Optional[int],
dimensionality_reduction_function: Callable,
model: SentenceTransformer,
) -> Figure:
if text_column not in df.columns:
raise ValueError(f"The specified column name doesn't exist. Columns available: {df.columns.values}")
if label_column not in df.columns:
df[label_column] = 0
df = df.dropna(subset=[text_column, label_column])
if sample:
df = df.sample(min(sample, df.shape[0]), random_state=SEED)
with st.spinner(text="Embedding text..."):
embeddings = embed_text(df[text_column].values.tolist(), model)
logger.info("Encoding labels")
encoded_labels = encode_labels(df[label_column])
with st.spinner("Reducing dimensionality..."):
embeddings_2d = dimensionality_reduction_function(embeddings)
logger.info("Generating figure")
plot = draw_interactive_scatter_plot(
df[text_column].values, embeddings_2d[:, 0], embeddings_2d[:, 1], encoded_labels.values, df[label_column].values, text_column, label_column
)
return plot
st.title("Perplexity Lenses")
st.write("Visualize text embeddings in 2D using colors to represent perplexity values.")
uploaded_file = st.file_uploader("Choose an csv/tsv file...", type=["csv", "tsv"])
st.write("Alternatively, select a dataset from the [hub](https://huggingface.co/datasets)")
col1, col2, col3 = st.columns(3)
with col1:
hub_dataset = st.text_input("Dataset name", "mc4")
with col2:
hub_dataset_config = st.text_input("Dataset configuration", "es")
with col3:
hub_dataset_split = st.text_input("Dataset split", "train")
col4, col5 = st.columns(2)
with col4:
text_column = st.text_input("Text field name", "text")
with col5:
language = st.selectbox("Language", LANGUAGES, 12)
col6, col7 = st.columns(2)
with col6:
doc_type = st.selectbox("Document type", DOCUMENT_TYPES, 1)
with col7:
sample = st.number_input("Maximum number of documents to use", 1, 100000, 1000)
dimensionality_reduction = st.selectbox("Dimensionality Reduction algorithm", DIMENSIONALITY_REDUCTION_ALGORITHMS, 0)
model_name = st.selectbox("Sentence embedding model", EMBEDDING_MODELS, 0)
with st.spinner(text="Loading embedding model..."):
model = load_model(model_name)
dimensionality_reduction_function = (
partial(get_umap_embeddings, random_state=SEED) if dimensionality_reduction == "UMAP" else partial(get_tsne_embeddings, random_state=SEED)
)
with st.spinner(text="Loading KenLM model..."):
kenlm_model = KenlmModel.from_pretrained(language)
if uploaded_file or hub_dataset:
with st.spinner("Loading dataset..."):
if uploaded_file:
df = uploaded_file_to_dataframe(uploaded_file)
if doc_type == "Sentence":
df = documents_df_to_sentences_df(df, text_column, sample, seed=SEED)
df["perplexity"] = df[text_column].map(kenlm_model.get_perplexity)
else:
df = hub_dataset_to_dataframe(hub_dataset, hub_dataset_config, hub_dataset_split, sample, text_column, kenlm_model, seed=SEED, doc_type=doc_type)
# Round perplexity
df["perplexity"] = df["perplexity"].round().astype(int)
logger.info(f"Perplexity range: {df['perplexity'].min()} - {df['perplexity'].max()}")
plot = generate_plot(df, text_column, "perplexity", None, dimensionality_reduction_function, model)
logger.info("Displaying plot")
st.bokeh_chart(plot)
logger.info("Done")
|