File size: 6,154 Bytes
51d6cf1 cc2635a 51d6cf1 e309fdb cc2635a 51d6cf1 dbe410e 51d6cf1 cc2635a 51d6cf1 6f6d6d7 51d6cf1 0f0151d 51d6cf1 0f0151d 51d6cf1 6f6d6d7 51d6cf1 6f6d6d7 51d6cf1 e309fdb 6f6d6d7 51d6cf1 022af5a 51d6cf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Import the necessary Libraries
from warnings import filterwarnings
filterwarnings('ignore')
import os
import uuid
import json
import gradio as gr
import pandas as pd
from huggingface_hub import CommitScheduler
from pathlib import Path
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
# from langchain.llms import OpenAI
from langchain_openai import ChatOpenAI
from langchain.schema import HumanMessage, AIMessage, SystemMessage
# Create Client
import os
os.environ['OPENAI_API_KEY'] = "gl-U2FsdGVkX1+0bNWD6YsVLZUYsn0m1WfLxUzrP0xUFbtWFAfk9Z1Cz+mD8u1yqKtV"; # e.g. gl-U2FsdGVkX19oG1mRO+LGAiNeC7nAeU8M65G4I6bfcdI7+9GUEjFFbplKq48J83by
os.environ["OPENAI_BASE_URL"] = "https://aibe.mygreatlearning.com/openai/v1" # e.g. "https://aibe.mygreatlearning.com/openai/v1";
model_name = 'gpt-4o-mini' # e.g. 'gpt-3.5-turbo'
# llm_client = OpenAI()
# Initialize the ChatOpenAI model
llm = ChatOpenAI(model_name=model_name, temperature=0) # Set temperature to 0 for deterministic output
# Create a HumanMessage
user_message = HumanMessage(content="What's the weather like today?")
# Define the embedding model and the vectorstore
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')
vectorstore_persisted = Chroma(
collection_name='10k_reports',
persist_directory='10k_reports_db',
embedding_function=embedding_model
)
#
##
#
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="eric-green-rag-financial-analyst",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
# Define the Q&A system message
# Create a system message for the LLM
qna_system_message = """
You are an assistant to a tech industry financial analyst. Your task is to provide relevant information about a set of companies AWS, Google, IBM, Meta, Microsoft.
User input will include the necessary context for you to answer their questions. This context will begin with the token: ###Context.
The context contains references to specific portions of documents relevant to the user's query, along with source links.
The source for a context will begin with the token ###Source.
When crafting your response:
1. Select only context relevant to answer the question.
2. Include the source links in your response.
3. User questions will begin with the token: ###Question.
4. If the question is irrelevant to financial report information for the 5 companies, respond with "I am unable to locate relevent information. I answer questions related to the financial performance of AWS, Google, IBM, Meta and Microsoft."
Please adhere to the following guidelines:
- Your response should only be about the question asked and nothing else.
- Answer only using the context provided.
- Do not mention anything about the context in your final answer.
- If the answer is not found in the context, it is very very important for you to respond with "I am unable to locate a relevent answer."
- Always quote the source when you use the context. Cite the relevant source at the end of your response under the section - Source:
- Do not make up sources. Use the links provided in the sources section of the context and nothing else. You are prohibited from providing other links/sources.
Here is an example of how to structure your response:
Answer:
[Answer]
Source:
[Source]
"""
# Define the user message template
# Create a message template
qna_user_message_template = """
###Context
{context}
###Question
{question}
"""
# Define the llm_query function that runs when 'Submit' is clicked or when a API request is made
def llm_query(user_input,company):
filter = "dataset/"+company+"-10-k-2023.pdf"
relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter={"source":filter})
# 1 - Create context_for_query
context_list = [d.page_content + "\n ###Source: " + str(d.metadata['page']) + "\n\n " for d in relevant_document_chunks]
context_for_query = ". ".join(context_list)
# 2 - Create messages
prompt = [
{'role':'system', 'content': qna_system_message},
{'role': 'user', 'content': qna_user_message_template.format(
context=context_for_query,
question=user_input
)
}
]
# Get response from the LLM
try:
# Call the chat model with the message
response = llm([prompt])
# response = llm_client.chat.completions.create(
# model=model_name,
# messages=prompt,
# temperature=0
# )
llm_response = response.choices[0].message.content.strip()
except Exception as e:
llm_response = f'Sorry, I encountered the following error: \n {e}'
print(llm_response)
# While the prediction is made, log both the inputs and outputs to a local log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'user_input': user_input,
'retrieved_context': context_for_query,
'model_response': llm_response
}
))
f.write("\n")
return llm_response
# Set-up the Gradio UI
company = gr.Radio(label='Company:', choices=["aws", "google", "ibm", "meta", "microsoft"], value="aws") # Create a radio button for company selection
textbox = gr.Textbox(label='Question:') # Create a textbox for user input
# Create Gradio interface
# For the inputs parameter of Interface provide [textbox,company] with outputs parameter of Interface provide prediction
demo = gr.Interface(fn=llm_query, inputs=[textbox, company], outputs="text", title="Financial Analyst Assistant", description="Ask questions about the financial performance of AWS, Google, IBM, Meta, and Microsoft based on their 10-K reports.\n\nPlease enter a question below.")
demo.queue()
demo.launch()
|