File size: 17,200 Bytes
efa1353
 
 
8020398
efa1353
0639262
 
 
 
 
 
 
c812124
669715f
 
 
 
 
 
 
7d299b1
669715f
 
 
 
 
 
 
 
bd18e87
669715f
 
 
 
 
 
39564a4
669715f
 
52cb438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669715f
0d04150
024ee6a
 
 
 
0d04150
 
 
024ee6a
 
 
 
0d04150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7983b33
669715f
0d04150
 
 
 
 
 
 
 
 
 
 
 
8cbd2c7
 
cb4eb0e
 
0d04150
c24728c
8020398
b6f23ea
0d04150
8020398
 
 
0d04150
 
 
 
 
 
 
 
52cb438
 
 
 
 
 
 
b6f23ea
52cb438
0d04150
 
52cb438
 
8020398
bd18e87
52cb438
 
bd18e87
cb4eb0e
bd18e87
cb4eb0e
 
8020398
52cb438
b6f23ea
 
 
52cb438
8020398
 
0d04150
c718918
b6f23ea
8020398
 
 
 
 
6ec8160
8020398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52cb438
 
 
 
 
 
 
 
cb4eb0e
bd18e87
cb4eb0e
 
 
bd18e87
8020398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d04150
8020398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669715f
32c9458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b8527f
 
 
9d75037
 
32c9458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669715f
8c17f89
c718918
 
cdc3395
 
 
 
 
 
 
 
 
 
 
 
c718918
32c9458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c718918
 
 
 
 
32c9458
 
 
 
 
 
c718918
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import sys
import os
from pathlib import Path
import gc

# Add the StableCascade and CSD directories to the Python path
app_dir = Path(__file__).parent
sys.path.extend([
    str(app_dir),
    str(app_dir / "third_party" / "StableCascade"),
    str(app_dir / "third_party" / "CSD")
])

import yaml
import torch
from tqdm import tqdm
from accelerate.utils import set_module_tensor_to_device
import torch.nn.functional as F
import torchvision.transforms as T
from lang_sam import LangSAM
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCoreC, WurstCoreB
from gdf_rbm import RBM
from stage_c_rbm import StageCRBM
from utils import WurstCoreCRBM
from gdf.schedulers import CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from gdf.targets import EpsilonTarget
import PIL

# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

# Flag for low VRAM usage
low_vram = True

# Function definition for low VRAM usage
def models_to(model, device="cpu", excepts=None):
    """
    Change the device of nn.Modules within a class, skipping specified attributes.
    """
    for attr_name in dir(model):
        if attr_name.startswith('__') and attr_name.endswith('__'):
            continue  # skip special attributes

        attr_value = getattr(model, attr_name, None)

        if isinstance(attr_value, torch.nn.Module):
            if excepts and attr_name in excepts:
                print(f"Except '{attr_name}'")
                continue
            print(f"Change device of '{attr_name}' to {device}")
            attr_value.to(device)
    
    torch.cuda.empty_cache()

# Stage C model configuration
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
with open(config_file, "r", encoding="utf-8") as file:
    loaded_config = yaml.safe_load(file)

core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)

# Stage B model configuration
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
with open(config_file_b, "r", encoding="utf-8") as file:
    config_file_b = yaml.safe_load(file)
    
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)

# Setup extras and models for Stage C
extras = core.setup_extras_pre()

gdf_rbm = RBM(
    schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
    input_scaler=VPScaler(), target=EpsilonTarget(),
    noise_cond=CosineTNoiseCond(),
    loss_weight=AdaptiveLossWeight(),
)

sampling_configs = {
    "cfg": 5,
    "sampler": DDPMSampler(gdf_rbm),
    "shift": 1,
    "timesteps": 20
}

extras = core.Extras(
    gdf=gdf_rbm,
    sampling_configs=sampling_configs,
    transforms=extras.transforms,
    effnet_preprocess=extras.effnet_preprocess,
    clip_preprocess=extras.clip_preprocess
)

models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)

# Setup extras and models for Stage B
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
    **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)

# Off-load old generator (low VRAM mode)
if low_vram:
    models.generator.to("cpu")
    torch.cuda.empty_cache()

# Load and configure new generator
generator_rbm = StageCRBM()
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
    set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)

generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
generator_rbm = core.load_model(generator_rbm, 'generator')

# Create models_rbm instance
models_rbm = core.Models(
    effnet=models.effnet,
    text_model=models.text_model,
    tokenizer=models.tokenizer,
    generator=generator_rbm,
    previewer=models.previewer,
    image_model=models.image_model  # Add this line
)

def reset_inference_state():
    global models_rbm, models_b, extras, extras_b, device, core, core_b
    
    # Reset sampling configurations
    extras.sampling_configs['cfg'] = 5
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0

    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0

    # Move models to CPU to free up GPU memory
    models_to(models_rbm, device="cpu")
    models_b.generator.to("cpu")

    # Clear CUDA cache
    torch.cuda.empty_cache()
    gc.collect()

    # Move necessary models back to the correct device
    if low_vram:
        models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
        models_rbm.generator.to(device)
        models_rbm.previewer.to(device)
    else:
        models_to(models_rbm, device=device)
    
    models_b.generator.to("cpu")  # Keep Stage B generator on CPU for now

    # Ensure effnet and image_model are on the correct device
    models_rbm.effnet.to(device)
    if models_rbm.image_model is not None:
        models_rbm.image_model.to(device)

    # Reset model states
    models_rbm.generator.eval().requires_grad_(False)
    models_b.generator.bfloat16().eval().requires_grad_(False)

    # Clear CUDA cache again
    torch.cuda.empty_cache()
    gc.collect()

def infer(ref_style_file, style_description, caption):
    global models_rbm, models_b
    try:
        height=1024
        width=1024
        batch_size=1
        output_file='output.png'
        
        stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)

        extras.sampling_configs['cfg'] = 4
        extras.sampling_configs['shift'] = 2
        extras.sampling_configs['timesteps'] = 20
        extras.sampling_configs['t_start'] = 1.0

        extras_b.sampling_configs['cfg'] = 1.1
        extras_b.sampling_configs['shift'] = 1
        extras_b.sampling_configs['timesteps'] = 10
        extras_b.sampling_configs['t_start'] = 1.0

        ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)

        batch = {'captions': [caption] * batch_size}
        batch['style'] = ref_style

        # Ensure models are on the correct device before inference
        if low_vram:
            models_to(models_rbm, device=device, excepts=["generator", "previewer"])
        else:
            models_to(models_rbm, device=device)
        
        models_b.generator.to(device)

        # Ensure effnet and image_model are on the correct device
        models_rbm.effnet.to(device)
        if models_rbm.image_model is not None:
            models_rbm.image_model.to(device)

        x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style))

        conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False) 
        unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)

        if low_vram:
            # The sampling process uses more vram, so we offload everything except two modules to the cpu.
            models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])

        # Stage C reverse process.
        sampling_c = extras.gdf.sample(
            models_rbm.generator, conditions, stage_c_latent_shape,
            unconditions, device=device,
            **extras.sampling_configs,
            x0_style_forward=x0_style_forward,
            apply_pushforward=False, tau_pushforward=8,
            num_iter=3, eta=0.1, tau=20, eval_csd=True,
            extras=extras, models=models_rbm,
            lam_style=1, lam_txt_alignment=1.0,
            use_ddim_sampler=True,
        )
        for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
            sampled_c = sampled_c

        # Stage B reverse process.
        with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):                
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            
            sampling_b = extras_b.gdf.sample(
                models_b.generator, conditions_b, stage_b_latent_shape,
                unconditions_b, device=device, **extras_b.sampling_configs,
            )
            for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
                sampled_b = sampled_b
            sampled = models_b.stage_a.decode(sampled_b).float()

        sampled = torch.cat([
            torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
            sampled.cpu(),
        ], dim=0)

        # Remove the batch dimension and keep only the generated image
        sampled = sampled[1]  # This selects the generated image, discarding the reference style image

        # Ensure the tensor is in [C, H, W] format
        if sampled.dim() == 3 and sampled.shape[0] == 3:
            sampled_image = T.ToPILImage()(sampled)  # Convert tensor to PIL image
            sampled_image.save(output_file)  # Save the image as a PNG
        else:
            raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")

        return output_file  # Return the path to the saved image

    finally:
        # Reset the state after inference, regardless of success or failure
        reset_inference_state()

def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
    global models_rbm, models_b
    try:
        caption = f"{caption} in {style_description}"
        sam_prompt = f"{caption}"
        use_sam_mask = False

        if low_vram:
            # Revert the devices of the modules back to their original state
            models_to(models_rbm, device)
        
        batch_size = 1
        height, width = 1024, 1024
        stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
        
        extras.sampling_configs['cfg'] = 4
        extras.sampling_configs['shift'] = 2
        extras.sampling_configs['timesteps'] = 20
        extras.sampling_configs['t_start'] = 1.0
        extras_b.sampling_configs['cfg'] = 1.1
        extras_b.sampling_configs['shift'] = 1
        extras_b.sampling_configs['timesteps'] = 10
        extras_b.sampling_configs['t_start'] = 1.0
        
        ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
        ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
        
        batch = {'captions': [caption] * batch_size}
        batch['style'] = ref_style
        batch['images'] = ref_images
        
        x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images.to(device)))
        x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
        
        ## SAM Mask for sub
        use_sam_mask = False
        x0_preview = models_rbm.previewer(x0_forward)
        sam_model = LangSAM()
        
        # Convert tensor to PIL Image before passing to sam_model.predict
        x0_preview_pil = T.ToPILImage()(x0_preview[0])
        x0_preview_tensor = T.ToTensor()(x0_preview_pil)  # Convert PIL Image back to tensor
        sam_mask, boxes, phrases, logits = sam_model.predict(x0_preview_pil, sam_prompt)
        sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
        
        conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_subject_style=True, eval_csd=False)
        unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False, eval_subject_style=True)    
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)

        if low_vram:
            # The sampling process uses more vram, so we offload everything except two modules to the cpu.
            models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
            models_to(sam_model, device="cpu")
            models_to(sam_model.sam, device="cpu")
        
        # Stage C reverse process.
        sampling_c = extras.gdf.sample(
            models_rbm.generator, conditions, stage_c_latent_shape,
            unconditions, device=device,
            **extras.sampling_configs,
            x0_style_forward=x0_style_forward, x0_forward=x0_forward,
            apply_pushforward=False, tau_pushforward=5, tau_pushforward_csd=10, 
            num_iter=3, eta=1e-1, tau=20, eval_sub_csd=True,
            extras=extras, models=models_rbm,  
            use_attn_mask=use_sam_mask,
            save_attn_mask=False,
            lam_content=1, lam_style=1,
            sam_mask=sam_mask, use_sam_mask=use_sam_mask,
            sam_prompt=sam_prompt
        )
        
        for (sampled_c, _, _) in tqdm(sampling_c, total=extras.sampling_configs['timesteps']):
            sampled_c = sampled_c

        # Stage B reverse process.
        with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):                
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            
            sampling_b = extras_b.gdf.sample(
                models_b.generator, conditions_b, stage_b_latent_shape,
                unconditions_b, device=device, **extras_b.sampling_configs,
            )
            for (sampled_b, _, _) in tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']):
                sampled_b = sampled_b
            sampled = models_b.stage_a.decode(sampled_b).float()

        sampled = torch.cat([
            torch.nn.functional.interpolate(ref_images.cpu(), size=(height, width)),
            torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
            sampled.cpu(),
        ], dim=0)

        # Remove the batch dimension and keep only the generated image
        sampled = sampled[2]  # This selects the generated image, discarding the reference images

        # Ensure the tensor is in [C, H, W] format
        if sampled.dim() == 3 and sampled.shape[0] == 3:
            output_file = 'output_compo.png'
            sampled_image = T.ToPILImage()(sampled)  # Convert tensor to PIL image
            sampled_image.save(output_file)  # Save the image as a PNG
        else:
            raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")

        return output_file  # Return the path to the saved image

    finally:
        # Reset the state after inference, regardless of success or failure
        reset_inference_state()

import gradio as gr

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# RB-Modulation")
        gr.Markdown("## Training-Free Personalization of Diffusion Models using Stochastic Optimal Control")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href='https://rb-modulation.github.io'>
                <img src='https://img.shields.io/badge/Project-Page-Green'>
            </a> 
            <a href='https://arxiv.org/pdf/2405.17401'>
                <img src='https://img.shields.io/badge/Paper-Arxiv-red'>
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                style_reference_image = gr.Image(
                    label = "Style Reference Image",
                    type = "filepath"
                )
                style_description = gr.Textbox(
                    label ="Style Description"
                )
                subject_prompt = gr.Textbox(
                    label = "Subject Prompt"
                )
                with gr.Accordion("Advanced Settings", open=False):
                    subject_reference = gr.Image(type="filepath")
                    use_subject_ref = gr.Checkbox(label="Use Subject Image as Reference", value=False)
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output_image = gr.Image(label="Output Image")
    '''
    submit_btn.click(
        fn = infer,
        inputs = [style_reference_image, style_description, subject_prompt],
        outputs = [output_image]
    )
    '''
    submit_btn.click(
        fn = infer_compo,
        inputs = [style_description, style_reference_image, subject_prompt, subject_reference],
        outputs = [output_image]
    )

demo.launch()