File size: 4,344 Bytes
1cb6bad
 
 
 
ee7720a
460c68a
 
 
2d87298
1cb6bad
 
 
ee7720a
 
 
 
1cb6bad
ee7720a
 
1cb6bad
 
 
0473e4c
 
 
2d87298
0968858
54703ae
b879745
 
 
1cb6bad
b879745
 
468cf40
 
 
 
 
b879745
1cb6bad
b879745
 
 
 
 
ee7720a
b879745
 
 
ee7720a
b879745
 
 
ee7720a
b879745
 
ee7720a
b879745
 
 
 
 
 
ee7720a
b879745
ee7720a
ceb312c
b879745
ee7720a
ceb312c
 
b879745
ee7720a
b879745
ee7720a
 
 
b879745
 
1cb6bad
ee7720a
1cb6bad
f06bd9d
 
 
22bb482
f06bd9d
 
 
 
 
2ea2166
 
 
 
22bb482
 
0a595e2
6c71d3e
 
 
22bb482
 
 
dff7b2f
6c71d3e
22bb482
6c71d3e
 
 
 
 
 
 
 
 
 
7367001
6c71d3e
 
0968858
7367001
 
 
6c71d3e
dff7b2f
54703ae
2ea2166
 
 
 
0968858
2ea2166
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gradio as gr
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import sa_handler
import math
from diffusers.utils import load_image
import inversion
import numpy as np
import spaces

# init models

scheduler = DDIMScheduler(
    beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
    clip_sample=False, set_alpha_to_one=False)

pipeline = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16",
    use_safetensors=True,
    scheduler=scheduler
).to("cuda")

pipeline.enable_model_cpu_offload() 
pipeline.enable_vae_slicing()

@spaces.GPU(duration=120)
def run(ref_path, ref_style, ref_prompt, prompt1):
    # DDIM inversion
    src_style = f"{ref_style}"
    src_prompt = f"{ref_prompt}, {src_style}."
    image_path = f"{ref_path}"

    num_inference_steps = 50
    x0 = np.array(load_image(image_path).resize((1024, 1024)))

    try:
        zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
    except:
        zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
    #mediapy.show_image(x0, title="innput reference image", height=256)

    # run StyleAligned
    prompts = [
        src_prompt,
        prompt1,
    ]

    # some parameters you can adjust to control fidelity to reference
    shared_score_shift = np.log(2)  # higher value induces higher fidelity, set 0 for no shift
    shared_score_scale = 1.0  # higher value induces higher, set 1 for no rescale

    # for very famouse images consider supressing attention to refference, here is a configuration example:
    # shared_score_shift = np.log(1)
    # shared_score_scale = 0.5

    for i in range(1, len(prompts)):
        prompts[i] = f'{prompts[i]}, {src_style}.'

    handler = sa_handler.Handler(pipeline)
    sa_args = sa_handler.StyleAlignedArgs(
        share_group_norm=True, share_layer_norm=True, share_attention=True,
        adain_queries=True, adain_keys=True, adain_values=False,
        shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
    handler.register(sa_args)

    zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)

    g_cpu = torch.Generator(device='cuda')
    g_cpu.manual_seed(10)

    latents = torch.randn(len(prompts), 4, 128, 128, device='cuda', generator=g_cpu,
                      dtype=pipeline.unet.dtype,).to('cuda')
    latents[0] = zT

    images_a = pipeline(prompts, latents=latents,
                    callback_on_step_end=inversion_callback,
                    num_inference_steps=num_inference_steps, guidance_scale=10.0).images

    handler.remove()
    #mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])

    return images_a

css = """
#col-container{
    margin: 0 auto;
    max-width: 820px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr. Column(elem_id="col-container"):
        gr.HTML("""
        <h2 style="text-align: center;">Google's StyleAligned Transfer</h2>
        """            
        )
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    ref_path = gr.Image(type="filepath")
                    ref_style = gr.Textbox(label="Reference style")
                    ref_prompt = gr.Textbox(label="Reference prompt")
                
            with gr.Column():
                with gr.Group():
                    results = gr.Gallery()
                    prompt1 = gr.Textbox(label="Prompt1")
                    run_button = gr.Button("Submit")

        gr.Examples(
            examples=[
                [
                    "./example_image/medieval-bed.jpeg",
                    "medieval painting",
                    "Man laying on bed",
                    "A man working on a laptop",
                ]
            ],
            fn=run,
            inputs = [
                ref_path, ref_style, ref_prompt,
                prompt1
            ],
            outputs=[results],
            cache_examples=False
        )
                
    
    run_button.click(
        fn = run,
        inputs = [
            ref_path, ref_style, ref_prompt,
            prompt1    
        ],
        outputs = [
            results
        ]
    )

demo.queue().launch()