Spaces:
Running
Running
File size: 28,256 Bytes
46cb01f d209547 803c7df d209547 46cb01f 6523a6d d209547 46cb01f d209547 46cb01f d209547 46cb01f 85c1b8e d209547 0df810d 46cb01f 85c1b8e a96f4dc 46cb01f 803c7df 3f0364c 46cb01f 803c7df 46cb01f 0a77f72 803c7df a96f44d 803c7df a96f44d 46cb01f a96f44d 46cb01f 3f0364c a96f44d 85c1b8e a96f44d 85c1b8e 46cb01f 85c1b8e 0a77f72 a96f44d 0a77f72 a96f44d 46cb01f eac6890 46cb01f 87fac28 46cb01f a96f44d 87fac28 46cb01f 85c1b8e 85748ef 498559f 1c44a7d a96f44d 85748ef 1c44a7d 46cb01f eac6890 85748ef eac6890 85748ef 0a77f72 85748ef 0a77f72 85748ef 46cb01f 69cf636 6523a6d 46cb01f a96f44d 46cb01f 3cd6d41 e2400cc 3cd6d41 6523a6d 3cd6d41 6523a6d 3cd6d41 46cb01f a96f44d 87fac28 6523a6d 46cb01f 6523a6d a96f44d 87fac28 5a3211f 46cb01f a96f44d 46cb01f 19070ab a96f44d 4a4820f a96f44d 19070ab 47e006f 19070ab 46cb01f 85748ef a96f44d 46cb01f a96f44d 46cb01f a96f44d 46cb01f 803c7df 46cb01f 803c7df 46cb01f 803c7df 46cb01f 9bf9397 85c1b8e 0fe3e72 a96f44d 46cb01f 074c5e1 0a77f72 3d61350 803c7df 3d61350 80b41d1 46cb01f 3cd6d41 803c7df 3cd6d41 4aced93 3d61350 0a77f72 a96f4dc 0a77f72 a96f4dc 3d61350 0a77f72 a96f4dc 0a77f72 80b41d1 0a77f72 a96f4dc 0a77f72 3d61350 3cd6d41 803c7df 4aced93 85c1b8e 3d61350 46cb01f 85c1b8e 46cb01f 0fe3e72 85c1b8e a96f4dc 85c1b8e 46cb01f eac6890 46cb01f a96f44d 69cf636 46cb01f 85c1b8e 6523a6d 0df810d 46cb01f 69cf636 46cb01f 85748ef 0df810d 46cb01f a96f44d 46cb01f a96f44d 46cb01f 600ad79 69cf636 bab75aa 85748ef 600ad79 69cf636 600ad79 46cb01f 69cf636 46cb01f c9e9575 5960e87 c9e9575 0a77f72 6523a6d 3cd6d41 46cb01f 9db361a d61405b 46cb01f 6523a6d 46cb01f 69cf636 46cb01f a96f44d 9db361a 46cb01f 69cf636 6523a6d 46cb01f a96f44d 69cf636 a96f44d 46cb01f 6523a6d 46cb01f 9db361a 46cb01f 9db361a 46cb01f a96f44d 9db361a 46cb01f a96f44d 46cb01f a96f44d c9e9575 47e006f c9e9575 6523a6d 4a4820f 6523a6d 4a4820f 85c1b8e 4a4820f 46cb01f 6523a6d 566d5f2 46cb01f 32dc2d8 85c1b8e 0df810d a96f44d 32dc2d8 19070ab 0df810d 566d5f2 32dc2d8 0d94b71 32dc2d8 19070ab 566d5f2 6523a6d d449092 6523a6d 6e89e9e aecf3a7 a30dbd3 6523a6d a96f44d 6523a6d 0df810d 85748ef 0df810d a96f44d 6523a6d 0df810d 6523a6d aecf3a7 d449092 85748ef 5f6b691 6523a6d 5f6b691 0df810d d449092 6523a6d d449092 a96f44d 0c9ff65 708a42c d449092 0df810d a96f44d d449092 a96f44d 9bf9397 6523a6d baa52db 9bf9397 566d5f2 6523a6d 566d5f2 0df810d 566d5f2 85c1b8e 566d5f2 a96f44d 6523a6d baa52db 0df810d 566d5f2 85748ef 19070ab baa52db 0df810d baa52db 566d5f2 6523a6d 47e006f 6523a6d a96f44d 6523a6d a96f44d 3fef9c1 baa52db 566d5f2 9bf9397 baa52db 9bf9397 566d5f2 19070ab 566d5f2 46cb01f 4a4820f 6523a6d 754f876 1c44a7d 46cb01f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for seq2seq, text to image.
Script adapted from run_summarization_flax.py
"""
import json
import logging
import os
import sys
import time
from dataclasses import asdict, dataclass, field
from pathlib import Path
from typing import Callable, Optional
import datasets
import jax
import jax.numpy as jnp
import optax
import transformers
import wandb
from datasets import Dataset
from flax import jax_utils, traverse_util
from flax.jax_utils import unreplicate
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard_prng_key
from tqdm import tqdm
from transformers import AutoTokenizer, HfArgumentParser
from transformers.models.bart.modeling_flax_bart import BartConfig
from dalle_mini.data import Dataset
from dalle_mini.model import DalleBartConfig, DalleBartForConditionalGeneration
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
config_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained config name or path if not the same as model_name"
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
text_column: Optional[str] = field(
default="caption",
metadata={
"help": "The name of the column in the datasets containing the full texts (for summarization)."
},
)
encoding_column: Optional[str] = field(
default="encoding",
metadata={
"help": "The name of the column in the datasets containing the image encodings."
},
)
dataset_repo_or_path: str = field(
default=None,
metadata={"help": "The dataset repository containing encoded files."},
)
train_file: Optional[str] = field(
default=None,
metadata={"help": "The input training data file (glob acceptable)."},
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file (glob acceptable)."},
)
# data loading should not be a bottleneck so we use "streaming" mode by default
streaming: bool = field(
default=True,
metadata={"help": "Whether to stream the dataset."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Whether to use the authentication token for private datasets."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={
"help": "The number of processes to use for the preprocessing. Not used in streaming mode."
},
)
overwrite_cache: bool = field(
default=False,
metadata={
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
},
)
# default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
seed_dataset: int = field(
default=None,
metadata={
"help": "Random seed for the dataset that will be set at the beginning of training."
},
)
def __post_init__(self):
if self.dataset_repo_or_path is None:
raise ValueError("Need a dataset repository or path.")
@dataclass
class TrainingArguments:
"""
Arguments pertaining to training parameters.
"""
output_dir: str = field(
metadata={
"help": "The output directory where the model predictions and checkpoints will be written."
},
)
overwrite_output_dir: bool = field(
default=False,
metadata={
"help": (
"Overwrite the content of the output directory. "
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(
default=False, metadata={"help": "Whether to run eval on the dev set."}
)
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
gradient_accumulation_steps: int = field(
default=1,
metadata={
"help": "Number of updates steps to accumulate before performing a backward/update pass."
},
)
learning_rate: float = field(
default=5e-5, metadata={"help": "The initial learning rate."}
)
adafactor: bool = field(
default=False,
metadata={"help": "Whether or not to replace AdamW by Adafactor."},
)
weight_decay: float = field(
default=None, metadata={"help": "Weight decay if we apply some."}
)
adam_beta1: float = field(
default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}
)
adam_beta2: float = field(
default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}
)
adam_epsilon: float = field(
default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}
)
max_grad_norm: float = field(
default=1.0, metadata={"help": "Max gradient norm for Adafactor."}
)
use_decay: bool = field(
default=False,
metadata={"help": "Whether to use decay in the learning rate scheduler."},
)
num_train_epochs: float = field(
default=3.0, metadata={"help": "Total number of training epochs to perform."}
)
warmup_steps: int = field(
default=0, metadata={"help": "Linear warmup over warmup_steps."}
)
logging_steps: int = field(
default=40, metadata={"help": "Log every X updates steps."}
)
eval_steps: int = field(
default=400, metadata={"help": "Run an evaluation every X steps."}
)
save_steps: int = field(
default=4000, metadata={"help": "Save checkpoint every X updates steps."}
)
log_model: bool = field(
default=False,
metadata={"help": "Log model to wandb at `save_steps` frequency."},
)
seed_model: int = field(
default=42,
metadata={
"help": "Random seed for the model that will be set at the beginning of training."
},
)
push_to_hub: bool = field(
default=False,
metadata={
"help": "Whether or not to upload the trained model to the model hub after training."
},
)
resume_from_checkpoint: Optional[str] = field(
default=None,
metadata={"help": "Reference to a wandb artifact for resuming training."},
)
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray = None
epoch: int = 0
train_time: float = 0.0 # total time the model trained
train_samples: int = 0 # number of samples seen
def replicate(self):
return jax_utils.replicate(self).replace(
dropout_rng=shard_prng_key(self.dropout_rng)
)
def restore_state(self, artifact_dir):
# restore optimizer state
with (Path(artifact_dir) / "opt_state.msgpack").open("rb") as f:
new_opt_state = from_bytes(self.opt_state, f.read())
# restore other parameters
with (Path(artifact_dir) / "training_state.json").open("r") as f:
training_state = json.load(f)
# replace state
return self.replace(
opt_state=new_opt_state,
step=training_state["step"],
train_time=training_state["train_time"],
train_samples=training_state["train_samples"],
)
def create_learning_rate_fn(
num_warmup_steps: int,
learning_rate: float,
use_decay: bool,
num_train_steps: int = None, # used only with `use_decay`, typically train_size // batch_size * num_epochs
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
if use_decay:
assert (
num_train_steps is not None
), "Learning rate with decay requires number of training steps"
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
)
if not use_decay:
return warmup_fn
decay_fn = optax.linear_schedule(
init_value=learning_rate,
end_value=0,
transition_steps=num_train_steps - num_warmup_steps,
)
schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]
)
return schedule_fn
def wandb_log(metrics, step=None, prefix=None):
if jax.process_index() == 0:
log_metrics = {
f"{prefix}/{k}" if prefix is not None else k: v for k, v in metrics.items()
}
if step is not None:
log_metrics["train/step"] = step
wandb.log(log_metrics)
def main():
# See all possible arguments by passing the --help flag to this script.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Load dataset
dataset = Dataset(
**asdict(data_args),
do_train=training_args.do_train,
do_eval=training_args.do_eval,
)
# Set up wandb run
wandb.init(
entity="dalle-mini",
project="dalle-mini",
job_type="Seq2Seq",
config=parser.parse_args(),
)
if training_args.resume_from_checkpoint is not None:
artifact = wandb.run.use_artifact(training_args.resume_from_checkpoint)
artifact_dir = artifact.download()
# load model
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
# avoid OOM on TPU: see https://github.com/google/flax/issues/1658
print(model.params)
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
artifact_dir,
use_fast=True,
)
else:
# Set up our new model config
if model_args.config_name:
config = DalleBartConfig.from_pretrained(model_args.config_name)
else:
config = DalleBartConfig.from_pretrained(model_args.model_name_or_path)
# Load or create new model
if model_args.model_name_or_path:
model = DalleBartForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
config=config,
seed=training_args.seed_model,
dtype=getattr(jnp, model_args.dtype),
)
# avoid OOM on TPU: see https://github.com/google/flax/issues/1658
print(model.params)
else:
model = DalleBartForConditionalGeneration(
config,
seed=training_args.seed_model,
dtype=getattr(jnp, model_args.dtype),
)
# Load tokenizer
if model_args.tokenizer_name is not None:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, use_fast=True
)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=True,
)
logger.info(f"TPUs: {jax.device_count()}")
assert jax.device_count() == 8, "TPUs in use, please check running processes"
# Preprocessing the datasets.
# We need to normalize and tokenize inputs and targets.
dataset.preprocess(
tokenizer=tokenizer,
decoder_start_token_id=model.config.decoder_start_token_id,
normalize_text=model.config.normalize_text,
max_length=model.config.max_text_length,
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed_model)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = (
int(training_args.per_device_train_batch_size) * jax.device_count()
)
batch_size_per_update = train_batch_size * training_args.gradient_accumulation_steps
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
len_train_dataset, len_eval_dataset = dataset.length
steps_per_epoch = (
len_train_dataset // train_batch_size if len_train_dataset is not None else None
)
num_train_steps = (
steps_per_epoch * num_epochs if steps_per_epoch is not None else None
)
# Create learning rate schedule
learning_rate_fn = create_learning_rate_fn(
training_args.warmup_steps,
training_args.learning_rate,
training_args.use_decay,
num_train_steps,
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBart.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
layer_norm_params = [
(name, "scale")
for name in [
"self_attn_layer_norm",
"layernorm_embedding",
"final_layer_norm",
]
]
flat_mask = {
path: (path[-1] != "bias" and path[-2:] not in layer_norm_params)
for path in flat_params
}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
if training_args.adafactor:
# We use the default parameters here to initialize adafactor,
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
optimizer = optax.adafactor(
learning_rate=learning_rate_fn,
weight_decay_rate=training_args.weight_decay,
weight_decay_mask=decay_mask_fn,
clipping_threshold=training_args.max_grad_norm,
)
else:
optimizer = optax.adamw(
learning_rate=learning_rate_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# add gradient accumulation
if training_args.gradient_accumulation_steps > 1:
optimizer = optax.chain(
optax.apply_every(training_args.gradient_accumulation_steps), optimizer
)
# Setup train state
state = TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=optimizer,
dropout_rng=dropout_rng,
)
if training_args.resume_from_checkpoint is not None:
# restore optimizer state and other parameters
# we currently ignore partial epoch training: see https://github.com/borisdayma/dalle-mini/issues/105
state = state.restore_state(artifact_dir)
# label smoothed cross entropy
def loss_fn(logits, labels):
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
loss = loss.mean()
return loss
# Define gradient update step fn
def train_step(state, batch, delta_time):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params, batch):
labels = batch.pop("labels")
logits = state.apply_fn(
**batch, params=params, dropout_rng=dropout_rng, train=True
)[0]
loss = loss_fn(logits, labels)
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grads = grad_fn(state.params, batch)
grads = jax.lax.pmean(grads, "batch")
state = state.apply_gradients(
grads=grads,
dropout_rng=new_dropout_rng,
train_time=state.train_time + delta_time,
train_samples=state.train_samples + train_batch_size,
)
metrics = {
"loss": loss,
"learning_rate": learning_rate_fn(state.step),
}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return state, metrics
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
loss = loss_fn(logits, labels)
# summarize metrics
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return metrics
# Create parallel version of the train and eval step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
p_eval_step = jax.pmap(eval_step, "batch")
logger.info("***** Running training *****")
logger.info(f" Num examples = {len_train_dataset}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(
f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & gradient accumulation) = {batch_size_per_update}"
)
epochs = tqdm(
range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0
)
# set default x-axis as 'train/step'
wandb_log({}, step=state.step)
wandb.define_metric("*", step_metric="train/step")
# add interesting config parameters
wandb.config.update(
{
"len_train_dataset": len_train_dataset,
"len_eval_dataset": len_eval_dataset,
"batch_size_per_update": batch_size_per_update,
}
)
# replicate state on each device
state = state.replicate()
def run_evaluation():
# ======================== Evaluating ==============================
eval_metrics = []
if training_args.do_eval:
eval_loader = dataset.dataloader("eval", eval_batch_size)
eval_steps = (
len_eval_dataset // eval_batch_size
if len_eval_dataset is not None
else None
)
for batch in tqdm(
eval_loader,
desc="Evaluating...",
position=2,
leave=False,
total=eval_steps,
):
# Model forward
metrics = p_eval_step(state.params, batch)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
# log metrics
wandb_log(eval_metrics, step=unreplicate(state.step), prefix="eval")
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
epochs.write(desc)
epochs.desc = desc
return eval_metrics
def run_save_model(state, eval_metrics=None):
if jax.process_index() == 0:
params = jax.device_get(unreplicate(state.params))
# save model locally
model.save_pretrained(
training_args.output_dir,
params=params,
)
# save tokenizer
tokenizer.save_pretrained(training_args.output_dir)
# save state
opt_state = unreplicate(state.opt_state)
with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f:
f.write(to_bytes(opt_state))
state_dict = {
k: jax.device_get(unreplicate(getattr(state, k))).item()
for k in ["step", "epoch", "train_time", "train_samples"]
}
with (Path(training_args.output_dir) / "training_state.json").open(
"w"
) as f:
json.dump(
state_dict,
f,
)
# save to W&B
if training_args.log_model:
# save some space
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
c.cleanup(wandb.util.from_human_size("10GB"))
metadata = dict(state_dict)
if eval_metrics is not None:
metadata["eval"] = eval_metrics
artifact = wandb.Artifact(
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
)
artifact.add_file(
str(Path(training_args.output_dir) / "flax_model.msgpack")
)
artifact.add_file(str(Path(training_args.output_dir) / "config.json"))
artifact.add_file(
str(Path(training_args.output_dir) / "tokenizer.json")
)
artifact.add_file(
str(Path(training_args.output_dir) / "tokenizer_config.json")
)
artifact.add_file(str(Path(training_args.output_dir) / "vocab.json"))
artifact.add_file(str(Path(training_args.output_dir) / "merges.txt"))
artifact.add_file(
str(Path(training_args.output_dir) / "special_tokens_map.json")
)
artifact.add_file(
str(Path(training_args.output_dir) / "opt_state.msgpack")
)
artifact.add_file(
str(Path(training_args.output_dir) / "training_state.json")
)
wandb.run.log_artifact(artifact)
# save to the hub
if training_args.push_to_hub:
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs at step {unreplicate(state.step)+1}",
temp_dir=True, # avoid issues with being in a repository
)
# init variables
last_time = time.perf_counter()
train_metrics = None
for epoch in epochs:
state.replace(epoch=jax_utils.replicate(epoch))
# ======================== Training ================================
wandb_log({"train/epoch": epoch}, step=unreplicate(state.step))
# Generate an epoch by shuffling sampling indices from the train dataset
train_loader = dataset.dataloader("train", train_batch_size)
# train
for batch in tqdm(
train_loader,
desc="Training...",
position=1,
leave=False,
total=steps_per_epoch,
):
# calculate delta time (we have a lag of one step but it's ok)
new_time = time.perf_counter()
delta_time = new_time - last_time
last_time = new_time
# train step
state, train_metrics = p_train_step(
state, batch, jax_utils.replicate(delta_time)
)
step = unreplicate(state.step)
if step % training_args.logging_steps == 0 and jax.process_index() == 0:
# log metrics
metrics = unreplicate(train_metrics)
# log state parameters
state_dict = {
k.split("_")[-1]: unreplicate(getattr(state, k))
for k in ["epoch", "train_time", "train_samples"]
}
wandb_log({**metrics, **state_dict}, step=step, prefix="train")
eval_metrics = None
if training_args.eval_steps and step % training_args.eval_steps == 0:
eval_metrics = run_evaluation()
if step % training_args.save_steps == 0:
run_save_model(state, eval_metrics)
# log final train metrics
if train_metrics is not None:
train_metrics = unreplicate(train_metrics)
wandb_log(train_metrics, step=step, prefix="train")
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})"
)
# Final evaluation
eval_metrics = run_evaluation()
# save checkpoint after each epoch
run_save_model(state, eval_metrics)
if __name__ == "__main__":
main()
|