Spaces:
Runtime error
Runtime error
conditions: | |
- name: bm25-doc-tuned | |
display: BM25 doc (k1=4.46, b=0.82) | |
display-html: BM25 doc (<i>k<sub><small>1</small></sub></i>=4.46, <i>b</i>=0.82) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-slim --topics $topics --output $output --bm25 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2767 | |
R@1K: 0.9357 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2336 | |
nDCG@10: 0.5233 | |
R@1K: 0.6757 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3581 | |
nDCG@10: 0.5061 | |
R@1K: 0.7776 | |
- name: bm25-doc-default | |
display: BM25 doc (k1=0.9, b=0.4) | |
display-html: BM25 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (1a)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-slim --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2299 | |
R@1K: 0.8856 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2434 | |
nDCG@10: 0.5176 | |
R@1K: 0.6966 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3793 | |
nDCG@10: 0.5286 | |
R@1K: 0.8085 | |
- name: bm25-doc-segmented-tuned | |
display: BM25 doc segmented (k1=2.16, b=0.61) | |
display-html: BM25 doc segmented (<i>k<sub><small>1</small></sub></i>=2.16, <i>b</i>=0.61) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-slim --topics $topics --output $output --bm25 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2756 | |
R@1K: 0.9311 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2398 | |
nDCG@10: 0.5389 | |
R@1K: 0.6565 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3458 | |
nDCG@10: 0.5213 | |
R@1K: 0.7725 | |
- name: bm25-doc-segmented-default | |
display: BM25 doc segmented (k1=0.9, b=0.4) | |
display-html: BM25 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (1b)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-slim --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2684 | |
R@1K: 0.9178 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2449 | |
nDCG@10: 0.5302 | |
R@1K: 0.6871 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3586 | |
nDCG@10: 0.5281 | |
R@1K: 0.7755 | |
- name: bm25-rm3-doc-tuned | |
display: BM25+RM3 doc (k1=4.46, b=0.82) | |
display-html: BM25+RM3 doc (<i>k<sub><small>1</small></sub></i>=4.46, <i>b</i>=0.82) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rm3 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2227 | |
R@1K: 0.9303 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2638 | |
nDCG@10: 0.5526 | |
R@1K: 0.7188 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3610 | |
nDCG@10: 0.5195 | |
R@1K: 0.8180 | |
- name: bm25-rm3-doc-default | |
display: BM25+RM3 doc (k1=0.9, b=0.4) | |
display-html: BM25+RM3 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (1c)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.1618 | |
R@1K: 0.8783 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2773 | |
nDCG@10: 0.5174 | |
R@1K: 0.7507 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4015 | |
nDCG@10: 0.5254 | |
R@1K: 0.8259 | |
- name: bm25-rm3-doc-segmented-tuned | |
display: BM25+RM3 doc segmented (k1=2.16, b=0.61) | |
display-html: BM25+RM3 doc segmented (<i>k<sub><small>1</small></sub></i>=2.16, <i>b</i>=0.61) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rm3 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2448 | |
R@1K: 0.9359 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2655 | |
nDCG@10: 0.5392 | |
R@1K: 0.7037 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3471 | |
nDCG@10: 0.5030 | |
R@1K: 0.8056 | |
- name: bm25-rm3-doc-segmented-default | |
display: BM25+RM3 doc segmented (k1=0.9, b=0.4) | |
display-html: BM25+RM3 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (1d)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2413 | |
R@1K: 0.9351 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2892 | |
nDCG@10: 0.5684 | |
R@1K: 0.7368 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3792 | |
nDCG@10: 0.5202 | |
R@1K: 0.8023 | |
- name: bm25-rocchio-doc-tuned | |
display: BM25+Rocchio doc (k1=4.46, b=0.82) | |
display-html: BM25+Rocchio doc (<i>k<sub><small>1</small></sub></i>=4.46, <i>b</i>=0.82) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rocchio | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2242 | |
R@1K: 0.9314 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2657 | |
nDCG@10: 0.5584 | |
R@1K: 0.7299 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3628 | |
nDCG@10: 0.5199 | |
R@1K: 0.8217 | |
- name: bm25-rocchio-doc-default | |
display: BM25+Rocchio doc (k1=0.9, b=0.4) | |
display-html: BM25+Rocchio doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.1624 | |
R@1K: 0.8789 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2811 | |
nDCG@10: 0.5256 | |
R@1K: 0.7546 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4089 | |
nDCG@10: 0.5192 | |
R@1K: 0.8273 | |
- name: bm25-rocchio-doc-segmented-tuned | |
display: BM25+Rocchio doc segmented (k1=2.16, b=0.61) | |
display-html: BM25+Rocchio doc segmented (<i>k<sub><small>1</small></sub></i>=2.16, <i>b</i>=0.61) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rocchio --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2475 | |
R@1K: 0.9395 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2672 | |
nDCG@10: 0.5421 | |
R@1K: 0.7115 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3521 | |
nDCG@10: 0.4997 | |
R@1K: 0.8042 | |
- name: bm25-rocchio-doc-segmented-default | |
display: BM25+Rocchio doc segmented (k1=0.9, b=0.4) | |
display-html: BM25+Rocchio doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2447 | |
R@1K: 0.9351 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2889 | |
nDCG@10: 0.5570 | |
R@1K: 0.7423 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3830 | |
nDCG@10: 0.5226 | |
R@1K: 0.8102 | |
- name: bm25-d2q-t5-doc-tuned | |
display: BM25 w/ doc2query-T5 doc (k1=4.68, b=0.87) | |
display-html: BM25 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=4.68, <i>b</i>=0.87) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5 --topics $topics --output $output --bm25 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3269 | |
R@1K: 0.9553 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2620 | |
nDCG@10: 0.5972 | |
R@1K: 0.6867 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4099 | |
nDCG@10: 0.5852 | |
R@1K: 0.8105 | |
- name: bm25-d2q-t5-doc-default | |
display: BM25 w/ doc2query-T5 doc (k1=0.9, b=0.4) | |
display-html: BM25 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (2a)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2880 | |
R@1K: 0.9259 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2700 | |
nDCG@10: 0.5968 | |
R@1K: 0.7190 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4230 | |
nDCG@10: 0.5885 | |
R@1K: 0.8403 | |
- name: bm25-d2q-t5-doc-segmented-tuned | |
display: BM25 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59) | |
display-html: BM25 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=2.56, <i>b</i>=0.59) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5 --topics $topics --output $output --bm25 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3209 | |
R@1K: 0.9530 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2658 | |
nDCG@10: 0.6273 | |
R@1K: 0.6707 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4047 | |
nDCG@10: 0.5943 | |
R@1K: 0.7968 | |
- name: bm25-d2q-t5-doc-segmented-default | |
display: BM25 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4) | |
display-html: BM25 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (2b)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3179 | |
R@1K: 0.9490 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2798 | |
nDCG@10: 0.6119 | |
R@1K: 0.7165 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4150 | |
nDCG@10: 0.5957 | |
R@1K: 0.8046 | |
- name: bm25-rm3-d2q-t5-doc-tuned | |
display: BM25+RM3 w/ doc2query-T5 doc (k1=4.68, b=0.87) | |
display-html: BM25+RM3 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=4.68, <i>b</i>=0.87) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2623 | |
R@1K: 0.9522 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2813 | |
nDCG@10: 0.6091 | |
R@1K: 0.7184 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4100 | |
nDCG@10: 0.5745 | |
R@1K: 0.8238 | |
- name: bm25-rm3-d2q-t5-doc-default | |
display: BM25+RM3 w/ doc2query-T5 doc (k1=0.9, b=0.4) | |
display-html: BM25+RM3 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (2c)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.1834 | |
R@1K: 0.9126 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.3045 | |
nDCG@10: 0.5904 | |
R@1K: 0.7737 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4230 | |
nDCG@10: 0.5427 | |
R@1K: 0.8631 | |
- name: bm25-rm3-d2q-t5-doc-segmented-tuned | |
display: BM25+RM3 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59) | |
display-html: BM25+RM3 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=2.56, <i>b</i>=0.59) | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2973 | |
R@1K: 0.9563 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2892 | |
nDCG@10: 0.6247 | |
R@1K: 0.7069 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4016 | |
nDCG@10: 0.5711 | |
R@1K: 0.8156 | |
- name: bm25-rm3-d2q-t5-doc-segmented-default | |
display: BM25+RM3 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4) | |
display-html: BM25+RM3 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4) | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (2d)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.2803 | |
R@1K: 0.9551 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.3030 | |
nDCG@10: 0.6290 | |
R@1K: 0.7483 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.4271 | |
nDCG@10: 0.5851 | |
R@1K: 0.8266 | |
- name: unicoil-noexp-otf | |
display: "uniCOIL (noexp): otf" | |
display-html: "uniCOIL (noexp): on-the-fly query inference" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil-noexp --topics $topics --encoder castorini/unicoil-noexp-msmarco-passage --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3410 | |
R@1K: 0.9420 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2661 | |
nDCG@10: 0.6347 | |
R@1K: 0.6385 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3698 | |
nDCG@10: 0.5906 | |
R@1K: 0.7621 | |
- name: unicoil-noexp | |
display: "uniCOIL (noexp): pre-encoded" | |
display-html: "uniCOIL (noexp): pre-encoded queries" | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (3a)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil-noexp --topics $topics --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev-unicoil-noexp | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3409 | |
R@1K: 0.9420 | |
- topic_key: dl19-doc-unicoil-noexp | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2665 | |
nDCG@10: 0.6349 | |
R@1K: 0.6391 | |
- topic_key: dl20-unicoil-noexp | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3698 | |
nDCG@10: 0.5893 | |
R@1K: 0.7623 | |
- name: unicoil-otf | |
display: "uniCOIL (w/ doc2query-T5): otf" | |
display-html: "uniCOIL (w/ doc2query-T5): on-the-fly query inference" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil --topics $topics --encoder castorini/unicoil-msmarco-passage --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3532 | |
R@1K: 0.9546 | |
- topic_key: dl19-doc | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2789 | |
nDCG@10: 0.6396 | |
R@1K: 0.6654 | |
- topic_key: dl20 | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3881 | |
nDCG@10: 0.6030 | |
R@1K: 0.7866 | |
- name: unicoil | |
display: "uniCOIL (w/ doc2query-T5): pre-encoded" | |
display-html: "uniCOIL (w/ doc2query-T5): pre-encoded queries" | |
display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] — (3b)" | |
command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil --topics $topics --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage | |
topics: | |
- topic_key: msmarco-doc-dev-unicoil | |
eval_key: msmarco-doc-dev | |
scores: | |
- MRR@10: 0.3531 | |
R@1K: 0.9546 | |
- topic_key: dl19-doc-unicoil | |
eval_key: dl19-doc | |
scores: | |
- MAP: 0.2789 | |
nDCG@10: 0.6396 | |
R@1K: 0.6652 | |
- topic_key: dl20-unicoil | |
eval_key: dl20-doc | |
scores: | |
- MAP: 0.3882 | |
nDCG@10: 0.6033 | |
R@1K: 0.7869 | |