Spaces:
Build error
Build error
import copy | |
import os | |
import numpy as np | |
import torch | |
from typing import List | |
from yacs.config import CfgNode | |
import braceexpand | |
import cv2 | |
from .dataset import Dataset | |
from .utils import get_example, expand_to_aspect_ratio | |
def expand(s): | |
return os.path.expanduser(os.path.expandvars(s)) | |
def expand_urls(urls: str|List[str]): | |
if isinstance(urls, str): | |
urls = [urls] | |
urls = [u for url in urls for u in braceexpand.braceexpand(expand(url))] | |
return urls | |
FLIP_KEYPOINT_PERMUTATION = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] | |
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406]) | |
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225]) | |
DEFAULT_IMG_SIZE = 256 | |
class ImageDataset(Dataset): | |
def load_tars_as_webdataset(cfg: CfgNode, urls: str|List[str], train: bool, | |
resampled=False, | |
epoch_size=None, | |
cache_dir=None, | |
**kwargs) -> Dataset: | |
""" | |
Loads the dataset from a webdataset tar file. | |
""" | |
IMG_SIZE = cfg.MODEL.IMAGE_SIZE | |
BBOX_SHAPE = cfg.MODEL.get('BBOX_SHAPE', None) | |
MEAN = 255. * np.array(cfg.MODEL.IMAGE_MEAN) | |
STD = 255. * np.array(cfg.MODEL.IMAGE_STD) | |
def split_data(source): | |
for item in source: | |
datas = item['data.pyd'] | |
for data in datas: | |
if 'detection.npz' in item: | |
det_idx = data['extra_info']['detection_npz_idx'] | |
mask = item['detection.npz']['masks'][det_idx] | |
else: | |
mask = np.ones_like(item['jpg'][:,:,0], dtype=bool) | |
yield { | |
'__key__': item['__key__'], | |
'jpg': item['jpg'], | |
'data.pyd': data, | |
'mask': mask, | |
} | |
def suppress_bad_kps(item, thresh=0.0): | |
if thresh > 0: | |
kp2d = item['data.pyd']['keypoints_2d'] | |
kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2]) | |
item['data.pyd']['keypoints_2d'] = np.concatenate([kp2d[:,:2], kp2d_conf[:,None]], axis=1) | |
return item | |
def filter_numkp(item, numkp=4, thresh=0.0): | |
kp_conf = item['data.pyd']['keypoints_2d'][:, 2] | |
return (kp_conf > thresh).sum() > numkp | |
def filter_reproj_error(item, thresh=10**4.5): | |
losses = item['data.pyd'].get('extra_info', {}).get('fitting_loss', np.array({})).item() | |
reproj_loss = losses.get('reprojection_loss', None) | |
return reproj_loss is None or reproj_loss < thresh | |
def filter_bbox_size(item, thresh=1): | |
bbox_size_min = item['data.pyd']['scale'].min().item() * 200. | |
return bbox_size_min > thresh | |
def filter_no_poses(item): | |
return (item['data.pyd']['has_hand_pose'] > 0) | |
def supress_bad_betas(item, thresh=3): | |
has_betas = item['data.pyd']['has_betas'] | |
if thresh > 0 and has_betas: | |
betas_abs = np.abs(item['data.pyd']['betas']) | |
if (betas_abs > thresh).any(): | |
item['data.pyd']['has_betas'] = False | |
return item | |
def supress_bad_poses(item): | |
has_hand_pose = item['data.pyd']['has_hand_pose'] | |
if has_hand_pose: | |
hand_pose = item['data.pyd']['hand_pose'] | |
pose_is_probable = poses_check_probable(torch.from_numpy(hand_pose)[None, 3:], amass_poses_hist100_smooth).item() | |
if not pose_is_probable: | |
item['data.pyd']['has_hand_pose'] = False | |
return item | |
def poses_betas_simultaneous(item): | |
# We either have both hand_pose and betas, or neither | |
has_betas = item['data.pyd']['has_betas'] | |
has_hand_pose = item['data.pyd']['has_hand_pose'] | |
item['data.pyd']['has_betas'] = item['data.pyd']['has_hand_pose'] = np.array(float((has_hand_pose>0) and (has_betas>0))) | |
return item | |
def set_betas_for_reg(item): | |
# Always have betas set to true | |
has_betas = item['data.pyd']['has_betas'] | |
betas = item['data.pyd']['betas'] | |
if not (has_betas>0): | |
item['data.pyd']['has_betas'] = np.array(float((True))) | |
item['data.pyd']['betas'] = betas * 0 | |
return item | |
# Load the dataset | |
if epoch_size is not None: | |
resampled = True | |
#corrupt_filter = lambda sample: (sample['__key__'] not in CORRUPT_KEYS) | |
import webdataset as wds | |
dataset = wds.WebDataset(expand_urls(urls), | |
nodesplitter=wds.split_by_node, | |
shardshuffle=True, | |
resampled=resampled, | |
cache_dir=cache_dir, | |
) #.select(corrupt_filter) | |
if train: | |
dataset = dataset.shuffle(100) | |
dataset = dataset.decode('rgb8').rename(jpg='jpg;jpeg;png') | |
# Process the dataset | |
dataset = dataset.compose(split_data) | |
# Filter/clean the dataset | |
SUPPRESS_KP_CONF_THRESH = cfg.DATASETS.get('SUPPRESS_KP_CONF_THRESH', 0.0) | |
SUPPRESS_BETAS_THRESH = cfg.DATASETS.get('SUPPRESS_BETAS_THRESH', 0.0) | |
SUPPRESS_BAD_POSES = cfg.DATASETS.get('SUPPRESS_BAD_POSES', False) | |
POSES_BETAS_SIMULTANEOUS = cfg.DATASETS.get('POSES_BETAS_SIMULTANEOUS', False) | |
BETAS_REG = cfg.DATASETS.get('BETAS_REG', False) | |
FILTER_NO_POSES = cfg.DATASETS.get('FILTER_NO_POSES', False) | |
FILTER_NUM_KP = cfg.DATASETS.get('FILTER_NUM_KP', 4) | |
FILTER_NUM_KP_THRESH = cfg.DATASETS.get('FILTER_NUM_KP_THRESH', 0.0) | |
FILTER_REPROJ_THRESH = cfg.DATASETS.get('FILTER_REPROJ_THRESH', 0.0) | |
FILTER_MIN_BBOX_SIZE = cfg.DATASETS.get('FILTER_MIN_BBOX_SIZE', 0.0) | |
if SUPPRESS_KP_CONF_THRESH > 0: | |
dataset = dataset.map(lambda x: suppress_bad_kps(x, thresh=SUPPRESS_KP_CONF_THRESH)) | |
if SUPPRESS_BETAS_THRESH > 0: | |
dataset = dataset.map(lambda x: supress_bad_betas(x, thresh=SUPPRESS_BETAS_THRESH)) | |
if SUPPRESS_BAD_POSES: | |
dataset = dataset.map(lambda x: supress_bad_poses(x)) | |
if POSES_BETAS_SIMULTANEOUS: | |
dataset = dataset.map(lambda x: poses_betas_simultaneous(x)) | |
if FILTER_NO_POSES: | |
dataset = dataset.select(lambda x: filter_no_poses(x)) | |
if FILTER_NUM_KP > 0: | |
dataset = dataset.select(lambda x: filter_numkp(x, numkp=FILTER_NUM_KP, thresh=FILTER_NUM_KP_THRESH)) | |
if FILTER_REPROJ_THRESH > 0: | |
dataset = dataset.select(lambda x: filter_reproj_error(x, thresh=FILTER_REPROJ_THRESH)) | |
if FILTER_MIN_BBOX_SIZE > 0: | |
dataset = dataset.select(lambda x: filter_bbox_size(x, thresh=FILTER_MIN_BBOX_SIZE)) | |
if BETAS_REG: | |
dataset = dataset.map(lambda x: set_betas_for_reg(x)) # NOTE: Must be at the end | |
use_skimage_antialias = cfg.DATASETS.get('USE_SKIMAGE_ANTIALIAS', False) | |
border_mode = { | |
'constant': cv2.BORDER_CONSTANT, | |
'replicate': cv2.BORDER_REPLICATE, | |
}[cfg.DATASETS.get('BORDER_MODE', 'constant')] | |
# Process the dataset further | |
dataset = dataset.map(lambda x: ImageDataset.process_webdataset_tar_item(x, train, | |
augm_config=cfg.DATASETS.CONFIG, | |
MEAN=MEAN, STD=STD, IMG_SIZE=IMG_SIZE, | |
BBOX_SHAPE=BBOX_SHAPE, | |
use_skimage_antialias=use_skimage_antialias, | |
border_mode=border_mode, | |
)) | |
if epoch_size is not None: | |
dataset = dataset.with_epoch(epoch_size) | |
return dataset | |
def process_webdataset_tar_item(item, train, | |
augm_config=None, | |
MEAN=DEFAULT_MEAN, | |
STD=DEFAULT_STD, | |
IMG_SIZE=DEFAULT_IMG_SIZE, | |
BBOX_SHAPE=None, | |
use_skimage_antialias=False, | |
border_mode=cv2.BORDER_CONSTANT, | |
): | |
# Read data from item | |
key = item['__key__'] | |
image = item['jpg'] | |
data = item['data.pyd'] | |
mask = item['mask'] | |
keypoints_2d = data['keypoints_2d'] | |
keypoints_3d = data['keypoints_3d'] | |
center = data['center'] | |
scale = data['scale'] | |
hand_pose = data['hand_pose'] | |
betas = data['betas'] | |
right = data['right'] | |
#right = True | |
has_hand_pose = data['has_hand_pose'] | |
has_betas = data['has_betas'] | |
# image_file = data['image_file'] | |
# Process data | |
orig_keypoints_2d = keypoints_2d.copy() | |
center_x = center[0] | |
center_y = center[1] | |
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max() | |
if bbox_size < 1: | |
breakpoint() | |
mano_params = {'global_orient': hand_pose[:3], | |
'hand_pose': hand_pose[3:], | |
'betas': betas | |
} | |
has_mano_params = {'global_orient': has_hand_pose, | |
'hand_pose': has_hand_pose, | |
'betas': has_betas | |
} | |
mano_params_is_axis_angle = {'global_orient': True, | |
'hand_pose': True, | |
'betas': False | |
} | |
augm_config = copy.deepcopy(augm_config) | |
# Crop image and (possibly) perform data augmentation | |
img_rgba = np.concatenate([image, mask.astype(np.uint8)[:,:,None]*255], axis=2) | |
img_patch_rgba, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans = get_example(img_rgba, | |
center_x, center_y, | |
bbox_size, bbox_size, | |
keypoints_2d, keypoints_3d, | |
mano_params, has_mano_params, | |
FLIP_KEYPOINT_PERMUTATION, | |
IMG_SIZE, IMG_SIZE, | |
MEAN, STD, train, right, augm_config, | |
is_bgr=False, return_trans=True, | |
use_skimage_antialias=use_skimage_antialias, | |
border_mode=border_mode, | |
) | |
img_patch = img_patch_rgba[:3,:,:] | |
mask_patch = (img_patch_rgba[3,:,:] / 255.0).clip(0,1) | |
if (mask_patch < 0.5).all(): | |
mask_patch = np.ones_like(mask_patch) | |
item = {} | |
item['img'] = img_patch | |
item['mask'] = mask_patch | |
# item['img_og'] = image | |
# item['mask_og'] = mask | |
item['keypoints_2d'] = keypoints_2d.astype(np.float32) | |
item['keypoints_3d'] = keypoints_3d.astype(np.float32) | |
item['orig_keypoints_2d'] = orig_keypoints_2d | |
item['box_center'] = center.copy() | |
item['box_size'] = bbox_size | |
item['img_size'] = 1.0 * img_size[::-1].copy() | |
item['mano_params'] = mano_params | |
item['has_mano_params'] = has_mano_params | |
item['mano_params_is_axis_angle'] = mano_params_is_axis_angle | |
item['_scale'] = scale | |
item['_trans'] = trans | |
item['imgname'] = key | |
# item['idx'] = idx | |
return item | |