|
import tempfile |
|
import time |
|
from collections.abc import Sequence |
|
from typing import Any, cast |
|
import os |
|
from huggingface_hub import login |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pillow_heif |
|
import spaces |
|
import torch |
|
from gradio_image_annotation import image_annotator |
|
from gradio_imageslider import ImageSlider |
|
from PIL import Image |
|
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml |
|
from refiners.fluxion.utils import no_grad |
|
from refiners.solutions import BoxSegmenter |
|
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor |
|
from diffusers import FluxPipeline |
|
|
|
BoundingBox = tuple[int, int, int, int] |
|
|
|
|
|
pillow_heif.register_heif_opener() |
|
pillow_heif.register_avif_opener() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if HF_TOKEN is None: |
|
raise ValueError("Please set the HF_TOKEN environment variable") |
|
|
|
try: |
|
login(token=HF_TOKEN) |
|
except Exception as e: |
|
raise ValueError(f"Failed to login to Hugging Face: {str(e)}") |
|
|
|
|
|
segmenter = BoxSegmenter(device="cpu") |
|
segmenter.device = device |
|
segmenter.model = segmenter.model.to(device=segmenter.device) |
|
|
|
gd_model_path = "IDEA-Research/grounding-dino-base" |
|
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) |
|
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) |
|
gd_model = gd_model.to(device=device) |
|
assert isinstance(gd_model, GroundingDinoForObjectDetection) |
|
|
|
|
|
pipe = FluxPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
torch_dtype=torch.bfloat16, |
|
use_auth_token=HF_TOKEN |
|
) |
|
pipe.load_lora_weights( |
|
hf_hub_download( |
|
"ByteDance/Hyper-SD", |
|
"Hyper-FLUX.1-dev-8steps-lora.safetensors", |
|
use_auth_token=HF_TOKEN |
|
) |
|
) |
|
pipe.fuse_lora(lora_scale=0.125) |
|
pipe.to(device="cuda", dtype=torch.bfloat16) |
|
|
|
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: |
|
if not bboxes: |
|
return None |
|
for bbox in bboxes: |
|
assert len(bbox) == 4 |
|
assert all(isinstance(x, int) for x in bbox) |
|
return ( |
|
min(bbox[0] for bbox in bboxes), |
|
min(bbox[1] for bbox in bboxes), |
|
max(bbox[2] for bbox in bboxes), |
|
max(bbox[3] for bbox in bboxes), |
|
) |
|
|
|
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: |
|
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) |
|
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) |
|
|
|
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: |
|
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) |
|
with no_grad(): |
|
outputs = gd_model(**inputs) |
|
width, height = img.size |
|
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( |
|
outputs, |
|
inputs["input_ids"], |
|
target_sizes=[(height, width)], |
|
)[0] |
|
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) |
|
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) |
|
return bbox_union(bboxes.numpy().tolist()) |
|
|
|
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: |
|
assert img.size == mask_img.size |
|
img = img.convert("RGB") |
|
mask_img = mask_img.convert("L") |
|
if defringe: |
|
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 |
|
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) |
|
img = Image.fromarray((foreground * 255).astype("uint8")) |
|
result = Image.new("RGBA", img.size) |
|
result.paste(img, (0, 0), mask_img) |
|
return result |
|
|
|
def generate_background(prompt: str, width: int, height: int) -> Image.Image: |
|
"""λ°°κ²½ μ΄λ―Έμ§ μμ± ν¨μ""" |
|
try: |
|
with timer("Background generation"): |
|
image = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=8, |
|
guidance_scale=4.0, |
|
).images[0] |
|
return image |
|
except Exception as e: |
|
raise gr.Error(f"Background generation failed: {str(e)}") |
|
|
|
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image: |
|
"""μ κ²½κ³Ό λ°°κ²½ ν©μ± ν¨μ""" |
|
background = background.resize(foreground.size) |
|
return Image.alpha_composite(background.convert('RGBA'), foreground) |
|
|
|
@spaces.GPU |
|
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: |
|
time_log: list[str] = [] |
|
if isinstance(prompt, str): |
|
t0 = time.time() |
|
bbox = gd_detect(img, prompt) |
|
time_log.append(f"detect: {time.time() - t0}") |
|
if not bbox: |
|
print(time_log[0]) |
|
raise gr.Error("No object detected") |
|
else: |
|
bbox = prompt |
|
t0 = time.time() |
|
mask = segmenter(img, bbox) |
|
time_log.append(f"segment: {time.time() - t0}") |
|
return mask, bbox, time_log |
|
|
|
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: |
|
if img.width > 2048 or img.height > 2048: |
|
orig_res = max(img.width, img.height) |
|
img.thumbnail((2048, 2048)) |
|
if isinstance(prompt, tuple): |
|
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) |
|
prompt = (x0, y0, x1, y1) |
|
|
|
mask, bbox, time_log = _gpu_process(img, prompt) |
|
masked_alpha = apply_mask(img, mask, defringe=True) |
|
|
|
if bg_prompt: |
|
try: |
|
background = generate_background(bg_prompt, img.width, img.height) |
|
combined = combine_with_background(masked_alpha, background) |
|
except Exception as e: |
|
raise gr.Error(f"Background processing failed: {str(e)}") |
|
else: |
|
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) |
|
|
|
thresholded = mask.point(lambda p: 255 if p > 10 else 0) |
|
bbox = thresholded.getbbox() |
|
to_dl = masked_alpha.crop(bbox) |
|
|
|
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") |
|
to_dl.save(temp, format="PNG") |
|
temp.close() |
|
|
|
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) |
|
|
|
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: |
|
assert isinstance(img := prompts["image"], Image.Image) |
|
assert isinstance(boxes := prompts["boxes"], list) |
|
if len(boxes) == 1: |
|
assert isinstance(box := boxes[0], dict) |
|
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"]) |
|
else: |
|
assert len(boxes) == 0 |
|
bbox = None |
|
return _process(img, bbox) |
|
|
|
def on_change_bbox(prompts: dict[str, Any] | None): |
|
return gr.update(interactive=prompts is not None) |
|
|
|
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: |
|
return _process(img, prompt, bg_prompt) |
|
|
|
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): |
|
return gr.update(interactive=bool(img and prompt)) |
|
|
|
|
|
css = """ |
|
footer {display: none} |
|
.main-title { |
|
text-align: center; |
|
margin: 2em 0; |
|
} |
|
.main-title h1 { |
|
color: #2196F3; |
|
font-size: 2.5em; |
|
} |
|
.container { |
|
max-width: 1200px; |
|
margin: auto; |
|
padding: 20px; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: |
|
gr.HTML(""" |
|
<div class="main-title"> |
|
<h1>π¨ Advanced Image Object Extractor</h1> |
|
<p>Extract objects from images using text prompts or bounding boxes</p> |
|
</div> |
|
""") |
|
|
|
with gr.Tabs() as tabs: |
|
with gr.Tab("β¨ Extract by Text", id="tab_prompt"): |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1, min_width=400): |
|
gr.HTML("<h3>π₯ Input Section</h3>") |
|
iimg = gr.Image( |
|
type="pil", |
|
label="Upload Image" |
|
) |
|
with gr.Group(): |
|
prompt = gr.Textbox( |
|
label="π― Object to Extract", |
|
placeholder="Enter what you want to extract..." |
|
) |
|
bg_prompt = gr.Textbox( |
|
label="πΌοΈ Background Generation Prompt (optional)", |
|
placeholder="Describe the background you want..." |
|
) |
|
btn = gr.Button( |
|
"π Process Image", |
|
variant="primary", |
|
interactive=False |
|
) |
|
|
|
with gr.Column(scale=1, min_width=400): |
|
gr.HTML("<h3>π€ Output Section</h3>") |
|
oimg = ImageSlider( |
|
label="Results Preview", |
|
show_download_button=False |
|
) |
|
dlbt = gr.DownloadButton( |
|
"πΎ Download Result", |
|
interactive=False |
|
) |
|
|
|
with gr.Accordion("π Examples", open=False): |
|
examples = [ |
|
["examples/text.jpg", "text", "white background"], |
|
["examples/black-lamp.jpg", "black lamp", "minimalist interior"] |
|
] |
|
ex = gr.Examples( |
|
examples=examples, |
|
inputs=[iimg, prompt, bg_prompt], |
|
outputs=[oimg, dlbt], |
|
fn=process_prompt, |
|
cache_examples=True |
|
) |
|
|
|
with gr.Tab("π Extract by Box", id="tab_bb"): |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1, min_width=400): |
|
gr.HTML("<h3>π₯ Input Section</h3>") |
|
annotator = image_annotator( |
|
image_type="pil", |
|
disable_edit_boxes=True, |
|
show_download_button=False, |
|
show_share_button=False, |
|
single_box=True, |
|
label="Draw Box Around Object" |
|
) |
|
btn_bb = gr.Button( |
|
"βοΈ Extract Selection", |
|
variant="primary", |
|
interactive=False |
|
) |
|
|
|
with gr.Column(scale=1, min_width=400): |
|
gr.HTML("<h3>π€ Output Section</h3>") |
|
oimg_bb = ImageSlider( |
|
label="Results Preview", |
|
show_download_button=False |
|
) |
|
dlbt_bb = gr.DownloadButton( |
|
"πΎ Download Result", |
|
interactive=False |
|
) |
|
|
|
with gr.Accordion("π Examples", open=False): |
|
examples_bb = [ |
|
["examples/text.jpg", [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]], |
|
["examples/black-lamp.jpg", [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}]] |
|
] |
|
ex_bb = gr.Examples( |
|
examples=examples_bb, |
|
inputs=[annotator], |
|
outputs=[oimg_bb, dlbt_bb], |
|
fn=process_bbox, |
|
cache_examples=True |
|
) |
|
|
|
|
|
btn.add(oimg) |
|
for inp in [iimg, prompt]: |
|
inp.change( |
|
fn=on_change_prompt, |
|
inputs=[iimg, prompt, bg_prompt], |
|
outputs=[btn], |
|
) |
|
btn.click( |
|
fn=process_prompt, |
|
inputs=[iimg, prompt, bg_prompt], |
|
outputs=[oimg, dlbt], |
|
api_name=False, |
|
) |
|
|
|
btn_bb.add(oimg_bb) |
|
annotator.change( |
|
fn=on_change_bbox, |
|
inputs=[annotator], |
|
outputs=[btn_bb], |
|
) |
|
btn_bb.click( |
|
fn=process_bbox, |
|
inputs=[annotator], |
|
outputs=[oimg_bb, dlbt_bb], |
|
api_name=False, |
|
) |
|
|
|
demo.queue(max_size=30, api_open=False) |
|
demo.launch( |
|
show_api=False, |
|
share=False, |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True |
|
) |