Spaces:
Running
on
L40S
Running
on
L40S
File size: 21,611 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 f96a94d 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 f96a94d b070f28 5a70405 ef607fe 5a70405 d88c997 5a70405 8de87eb c589cc5 5a70405 57bc130 c589cc5 d6e9951 9d1df11 d6e9951 92dcaec d6e9951 92dcaec d6e9951 92dcaec d6e9951 57bc130 5a70405 dfb97d0 92dcaec d88c997 dbbe8de dfb97d0 9d1df11 92dcaec 7619202 1f3fd7c 856934e 8de87eb a135ad5 f96a94d b209823 0ace4dc 23a34ba bd46f72 f96a94d 52f4e8f 9c4daaa 52f4e8f f96a94d a7544c9 a898014 0758696 57bc130 e8095ff 0758696 3ff67eb 0758696 46cbcb2 8de87eb 3df02e9 8de87eb 7619202 8de87eb 3df02e9 3ff67eb 8de87eb 1f3fd7c c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb c201c52 8de87eb 3df02e9 8de87eb c201c52 46cbcb2 7619202 8de87eb d88c997 8de87eb d88c997 8de87eb 1f3fd7c 7619202 1f3fd7c 7619202 1f3fd7c 7619202 46cbcb2 9294203 b8b59c5 9294203 b8b59c5 9294203 b8b59c5 9294203 b8b59c5 46cbcb2 b31b828 46cbcb2 9880f3d 599ec34 f96a94d 0758696 c201c52 d88c997 0758696 c589cc5 0758696 c589cc5 0758696 d88c997 c201c52 5a70405 f96a94d d88c997 f96a94d 0758696 d88c997 0758696 d88c997 c201c52 dc03769 f96a94d 7d475c1 e8095ff 23a34ba f96a94d 3ff67eb ab95920 f96a94d 599ec34 f96a94d 23a34ba f96a94d 23a34ba f96a94d 23a34ba ee210e2 23a34ba 3ff67eb a898014 2e78ab8 db6a3b7 9183e4b d88c997 9183e4b 3ff67eb a135ad5 599ec34 f96a94d 599ec34 f96a94d 599ec34 d1d2845 521fdd3 db6a3b7 03489b3 7a9cd45 59ca7f8 5a70405 03489b3 57bc130 03489b3 ee467bc d1d2845 7a9cd45 ee467bc 61b9b71 d1d2845 f96a94d 03489b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from typing import Tuple, Dict, Any # Tuple import ์ถ๊ฐ
# ํ์ผ ์๋จ์ import ๋ฌธ
import transformers
from transformers import pipeline as transformers_pipeline
from transformers import Pipeline
import gc # ํ์ผ ์๋จ์ ์ถ๊ฐ
# ์ ์ญ ๋ณ์ ์ด๊ธฐํ
class GlobalVars:
def __init__(self):
self.translator = None
self.trellis_pipeline = None
self.flux_pipe = None
g = GlobalVars()
# ํ์ผ ์๋จ์ ์ถ๊ฐ
torch.backends.cudnn.benchmark = False # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๊ฐ์
torch.backends.cudnn.deterministic = True
torch.cuda.set_per_process_memory_fraction(0.7) # GPU ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ์ ํ
def initialize_models(device):
try:
print("Initializing models...")
g.translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device
)
print("Model initialization completed successfully")
# 3D ์์ฑ ํ์ดํ๋ผ์ธ
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
print("TrellisImageTo3DPipeline loaded successfully")
# ์ด๋ฏธ์ง ์์ฑ ํ์ดํ๋ผ์ธ
print("Loading flux_pipe...")
g.flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
device_map="balanced"
)
print("FluxPipeline loaded successfully")
# Hyper-SD LoRA ๋ก๋
print("Loading LoRA weights...")
lora_path = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
g.flux_pipe.load_lora_weights(lora_path)
g.flux_pipe.fuse_lora(lora_scale=0.125)
print("LoRA weights loaded successfully")
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
print("Initializing translator...")
g.translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device
)
print("Model initialization completed successfully")
except Exception as e:
print(f"Error during model initialization: {str(e)}")
raise
# ํ๊ฒฝ ๋ณ์ ์ค์
# ํ๊ฒฝ ๋ณ์ ์ค์
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
# CUDA ์ด๊ธฐํ ๋ฐฉ์ง
torch.set_grad_enabled(False)
def periodic_cleanup():
"""์ฃผ๊ธฐ์ ์ผ๋ก ์คํ๋ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
clear_gpu_memory()
return None
# Gradio ์ธํฐํ์ด์ค์ ์ฃผ๊ธฐ์ ์ ๋ฆฌ ์ถ๊ฐ
demo.load(periodic_cleanup, every=5) # 5์ด๋ง๋ค ์ ๋ฆฌ
# Hugging Face ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
if image is None:
print("Error: Input image is None")
return "", None
try:
if g.trellis_pipeline is None:
print("Error: trellis_pipeline is not initialized")
return "", None
# webp ์ด๋ฏธ์ง๋ฅผ RGB๋ก ๋ณํ
if isinstance(image, str) and image.endswith('.webp'):
image = Image.open(image).convert('RGB')
elif isinstance(image, Image.Image):
image = image.convert('RGB')
trial_id = str(uuid.uuid4())
processed_image = g.trellis_pipeline.preprocess_image(image)
if processed_image is not None:
save_path = f"{TMP_DIR}/{trial_id}.png"
processed_image.save(save_path)
print(f"Saved processed image to: {save_path}")
return trial_id, processed_image
else:
print("Error: Processed image is None")
return "", None
except Exception as e:
print(f"Error in image preprocessing: {str(e)}")
return "", None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
try:
# ์ด๊ธฐ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
clear_gpu_memory()
if not trial_id or trial_id.strip() == "":
return None, None
image_path = f"{TMP_DIR}/{trial_id}.png"
if not os.path.exists(image_path):
return None, None
image = Image.open(image_path)
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ ๊ฐํ
max_size = 384 # ๋ ์์ ํฌ๊ธฐ๋ก ์ ํ
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
with torch.inference_mode():
try:
# ํ์ดํ๋ผ์ธ์ GPU๋ก ์ด๋
g.trellis_pipeline.to('cuda')
# ๋ฐฐ์น ํฌ๊ธฐ ์ ํ
outputs = g.trellis_pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 8), # ์คํ
์ ์ ํ
"cfg_strength": ss_guidance_strength,
"batch_size": 1 # ๋ฐฐ์น ํฌ๊ธฐ ๋ช
์์ ์ ํ
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 8), # ์คํ
์ ์ ํ
"cfg_strength": slat_guidance_strength,
"batch_size": 1
},
)
# ์ค๊ฐ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
clear_gpu_memory()
# ๋น๋์ค ๋ ๋๋ง ์ต์ ํ
video = render_utils.render_video(
outputs['gaussian'][0],
num_frames=30, # ํ๋ ์ ์ ๊ฐ์
resolution=384 # ํด์๋ ์ ํ
)['color']
video_geo = render_utils.render_video(
outputs['mesh'][0],
num_frames=30,
resolution=384
)['normal']
# CPU๋ก ๋ฐ์ดํฐ ์ด๋ ๋ฐ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
video = [v.cpu().numpy() for v in video]
video_geo = [v.cpu().numpy() for v in video_geo]
clear_gpu_memory()
# ๋๋จธ์ง ์ฒ๋ฆฌ
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
new_trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
return state, video_path
finally:
# ์ ๋ฆฌ ์์
g.trellis_pipeline.to('cpu')
clear_gpu_memory()
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
g.trellis_pipeline.to('cpu')
clear_gpu_memory()
return None, None
def clear_gpu_memory():
"""GPU ๋ฉ๋ชจ๋ฆฌ๋ฅผ ๋ ์ฒ ์ ํ๊ฒ ์ ๋ฆฌํ๋ ํจ์"""
try:
if torch.cuda.is_available():
# ๋ชจ๋ GPU ์บ์ ์ ๋ฆฌ
torch.cuda.empty_cache()
torch.cuda.synchronize()
# ์ฌ์ฉํ์ง ์๋ ์บ์๋ ๋ฉ๋ชจ๋ฆฌ ํด์
for i in range(torch.cuda.device_count()):
with torch.cuda.device(i):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# Python ๊ฐ๋น์ง ์ปฌ๋ ํฐ ์คํ
gc.collect()
except Exception as e:
print(f"Error in clear_gpu_memory: {e}")
def move_to_device(model, device):
"""๋ชจ๋ธ์ ์์ ํ๊ฒ ๋๋ฐ์ด์ค๋ก ์ด๋ํ๋ ํจ์"""
try:
if hasattr(model, 'to'):
clear_gpu_memory()
model.to(device)
if device == 'cuda':
torch.cuda.synchronize()
clear_gpu_memory()
except Exception as e:
print(f"Error moving model to {device}: {str(e)}")
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
"""
3D ๋ชจ๋ธ์์ GLB ํ์ผ ์ถ์ถ
"""
try:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
except Exception as e:
print(f"GLB ์ถ์ถ ์ค ์ค๋ฅ ๋ฐ์: {e}")
return None, None
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
try:
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
# ํ๊ธ ๊ฐ์ง ๋ฐ ๋ฒ์ญ
def contains_korean(text):
return any(ord('๊ฐ') <= ord(c) <= ord('ํฃ') for c in text)
if contains_korean(prompt):
# Helsinki-NLP/opus-mt-ko-en ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ๋ฒ์ญ
translated = g.translator(prompt)[0]['translation_text']
prompt = translated
print(f"Translated prompt: {prompt}")
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
# ํฌ๊ธฐ ์ ํ
height = min(height, 512)
width = min(width, 512)
steps = min(steps, 12)
with torch.inference_mode():
generated_image = g.flux_pipe(
prompt=[formatted_prompt],
generator=torch.Generator('cuda').manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if generated_image is not None:
trial_id = str(uuid.uuid4())
save_path = f"{TMP_DIR}/{trial_id}.png"
generated_image.save(save_path)
print(f"Saved generated image to: {save_path}")
return generated_image
else:
print("Error: Generated image is None")
return None
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""## Craft3D""")
# Examples ์ด๋ฏธ์ง ๋ก๋
example_dir = "assets/example_image/"
example_images = []
if os.path.exists(example_dir):
for file in os.listdir(example_dir):
if file.endswith('.webp'):
example_images.append(os.path.join(example_dir, file))
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe what you want to create...",
lines=3
)
# ์ด๋ฏธ์ง ํ๋กฌํํธ
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion("Image Generation Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_image_btn = gr.Button("Generate Image")
with gr.Accordion("3D Generation Settings", open=False):
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)
generate_3d_btn = gr.Button("Generate 3D")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Examples ๊ฐค๋ฌ๋ฆฌ๋ฅผ ๋งจ ์๋๋ก ์ด๋
if example_images:
gr.Markdown("""### Example Images""")
with gr.Row():
gallery = gr.Gallery(
value=example_images,
label="Click an image to use it",
show_label=True,
elem_id="gallery",
columns=11, # ํ ์ค์ 12๊ฐ
rows=3, # 2์ค
height=400, # ๋์ด ์กฐ์
allow_preview=True,
object_fit="contain" # ์ด๋ฏธ์ง ๋น์จ ์ ์ง
)
def load_example(evt: gr.SelectData):
selected_image = Image.open(example_images[evt.index])
trial_id_val, processed_image = preprocess_image(selected_image)
return selected_image, trial_id_val
gallery.select(
load_example,
None,
[image_prompt, trial_id],
show_progress=True
)
# Handlers
generate_image_btn.click(
text_to_image,
inputs=[text_prompt, height, width, steps, scales, seed],
outputs=[image_prompt]
).then(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt]
)
# ๋๋จธ์ง ํธ๋ค๋ฌ๋ค
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_3d_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
if __name__ == "__main__":
try:
# CPU๋ก ์ด๊ธฐํ
device = "cpu"
print(f"Using device: {device}")
# ๋ชจ๋ธ ์ด๊ธฐํ
initialize_models(device)
# ์ด๊ธฐ ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ ํ
์คํธ
try:
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
if g.trellis_pipeline is not None:
g.trellis_pipeline.preprocess_image(test_image)
else:
print("Warning: trellis_pipeline is None")
except Exception as e:
print(f"Warning: Initial preprocessing test failed: {e}")
# Gradio ์ธํฐํ์ด์ค ์คํ
demo.queue() # ํ ๊ธฐ๋ฅ ํ์ฑํ
demo.launch(
allowed_paths=[PERSISTENT_DIR, TMP_DIR],
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"Error during initialization: {e}")
raise |