File size: 21,611 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
f96a94d
 
 
 
 
 
9880f3d
7d475c1
db6a3b7
 
9880f3d
db6a3b7
 
9880f3d
db6a3b7
f96a94d
b070f28
5a70405
ef607fe
 
5a70405
d88c997
5a70405
 
 
 
 
 
 
 
 
 
8de87eb
 
 
 
c589cc5
5a70405
57bc130
 
c589cc5
 
 
 
 
 
 
d6e9951
 
9d1df11
d6e9951
92dcaec
d6e9951
 
 
 
 
 
 
 
92dcaec
d6e9951
 
 
 
 
 
 
 
 
 
92dcaec
d6e9951
 
 
 
 
 
 
 
 
57bc130
 
 
 
5a70405
dfb97d0
92dcaec
d88c997
 
dbbe8de
 
dfb97d0
9d1df11
92dcaec
7619202
1f3fd7c
856934e
 
 
 
8de87eb
 
 
 
 
 
 
a135ad5
f96a94d
 
 
 
b209823
0ace4dc
 
23a34ba
bd46f72
f96a94d
 
 
 
 
 
 
 
 
 
 
52f4e8f
9c4daaa
52f4e8f
f96a94d
 
 
 
 
 
 
 
 
a7544c9
a898014
0758696
 
 
 
 
57bc130
 
 
 
e8095ff
 
 
 
 
 
0758696
 
 
3ff67eb
 
 
0758696
 
 
 
 
 
 
 
46cbcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de87eb
 
3df02e9
8de87eb
 
7619202
8de87eb
 
3df02e9
 
 
 
 
 
3ff67eb
8de87eb
 
1f3fd7c
 
 
 
 
c201c52
 
8de87eb
c201c52
 
8de87eb
c201c52
 
 
 
 
 
8de87eb
c201c52
8de87eb
c201c52
 
8de87eb
c201c52
8de87eb
c201c52
 
 
8de87eb
 
 
 
c201c52
 
8de87eb
 
c201c52
 
 
 
8de87eb
 
c201c52
 
8de87eb
 
 
 
c201c52
8de87eb
c201c52
 
 
 
 
 
 
 
 
 
 
8de87eb
 
3df02e9
 
8de87eb
 
c201c52
46cbcb2
7619202
8de87eb
d88c997
 
8de87eb
 
 
 
 
 
 
 
 
 
 
d88c997
 
8de87eb
1f3fd7c
7619202
 
 
 
1f3fd7c
7619202
 
 
1f3fd7c
7619202
 
 
46cbcb2
 
9294203
 
 
b8b59c5
 
9294203
b8b59c5
9294203
b8b59c5
 
9294203
b8b59c5
46cbcb2
 
b31b828
46cbcb2
 
 
 
 
 
9880f3d
599ec34
f96a94d
0758696
c201c52
 
 
 
 
d88c997
0758696
 
 
 
 
c589cc5
0758696
 
c589cc5
0758696
 
 
d88c997
 
 
 
 
c201c52
5a70405
f96a94d
d88c997
f96a94d
 
 
 
 
 
 
0758696
 
d88c997
 
 
0758696
 
 
 
 
 
 
 
d88c997
c201c52
 
 
 
dc03769
f96a94d
 
7d475c1
e8095ff
 
 
 
 
 
 
 
23a34ba
 
f96a94d
 
 
 
 
 
3ff67eb
ab95920
 
f96a94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599ec34
 
f96a94d
 
 
 
 
23a34ba
f96a94d
23a34ba
f96a94d
23a34ba
 
 
 
ee210e2
23a34ba
 
 
 
3ff67eb
a898014
2e78ab8
db6a3b7
9183e4b
 
 
 
 
 
 
 
 
d88c997
 
 
9183e4b
 
 
 
3ff67eb
 
 
 
 
 
 
 
 
 
 
 
a135ad5
599ec34
 
f96a94d
 
599ec34
 
 
f96a94d
599ec34
 
d1d2845
521fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
03489b3
7a9cd45
 
59ca7f8
 
5a70405
 
03489b3
 
 
 
57bc130
 
 
 
03489b3
 
 
 
ee467bc
d1d2845
7a9cd45
ee467bc
 
61b9b71
d1d2845
f96a94d
03489b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from typing import Tuple, Dict, Any  # Tuple import ์ถ”๊ฐ€
# ํŒŒ์ผ ์ƒ๋‹จ์˜ import ๋ฌธ
import transformers
from transformers import pipeline as transformers_pipeline
from transformers import Pipeline
import gc  # ํŒŒ์ผ ์ƒ๋‹จ์— ์ถ”๊ฐ€

# ์ „์—ญ ๋ณ€์ˆ˜ ์ดˆ๊ธฐํ™”
class GlobalVars:
    def __init__(self):
        self.translator = None
        self.trellis_pipeline = None
        self.flux_pipe = None

g = GlobalVars()

# ํŒŒ์ผ ์ƒ๋‹จ์— ์ถ”๊ฐ€
torch.backends.cudnn.benchmark = False  # ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๊ฐ์†Œ
torch.backends.cudnn.deterministic = True
torch.cuda.set_per_process_memory_fraction(0.7)  # GPU ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ์ œํ•œ
        
def initialize_models(device):
    try:
        print("Initializing models...")
        g.translator = transformers_pipeline(
            "translation", 
            model="Helsinki-NLP/opus-mt-ko-en",
            device=device
        )
        print("Model initialization completed successfully")
        
        # 3D ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ
        g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
            "JeffreyXiang/TRELLIS-image-large"
        )
        print("TrellisImageTo3DPipeline loaded successfully")
        
        # ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํŒŒ์ดํ”„๋ผ์ธ
        print("Loading flux_pipe...")
        g.flux_pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            torch_dtype=torch.bfloat16,
            device_map="balanced"
        )
        print("FluxPipeline loaded successfully")
        
        # Hyper-SD LoRA ๋กœ๋“œ
        print("Loading LoRA weights...")
        lora_path = hf_hub_download(
            "ByteDance/Hyper-SD",
            "Hyper-FLUX.1-dev-8steps-lora.safetensors",
            use_auth_token=HF_TOKEN
        )
        g.flux_pipe.load_lora_weights(lora_path)
        g.flux_pipe.fuse_lora(lora_scale=0.125)
        print("LoRA weights loaded successfully")
        
        # ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™”
        print("Initializing translator...")
        g.translator = transformers_pipeline(
            "translation", 
            model="Helsinki-NLP/opus-mt-ko-en",
            device=device
        )
        print("Model initialization completed successfully")
        
    except Exception as e:
        print(f"Error during model initialization: {str(e)}")
        raise
    

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'

# CUDA ์ดˆ๊ธฐํ™” ๋ฐฉ์ง€
torch.set_grad_enabled(False)

def periodic_cleanup():
    """์ฃผ๊ธฐ์ ์œผ๋กœ ์‹คํ–‰๋  ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ ํ•จ์ˆ˜"""
    clear_gpu_memory()
    return None

# Gradio ์ธํ„ฐํŽ˜์ด์Šค์— ์ฃผ๊ธฐ์  ์ •๋ฆฌ ์ถ”๊ฐ€
demo.load(periodic_cleanup, every=5)  # 5์ดˆ๋งˆ๋‹ค ์ •๋ฆฌ

# Hugging Face ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable is not set")

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'

torch.backends.cuda.matmul.allow_tf32 = True



class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    if image is None:
        print("Error: Input image is None")
        return "", None
        
    try:
        if g.trellis_pipeline is None:
            print("Error: trellis_pipeline is not initialized")
            return "", None
            
        # webp ์ด๋ฏธ์ง€๋ฅผ RGB๋กœ ๋ณ€ํ™˜
        if isinstance(image, str) and image.endswith('.webp'):
            image = Image.open(image).convert('RGB')
        elif isinstance(image, Image.Image):
            image = image.convert('RGB')
            
        trial_id = str(uuid.uuid4())
        processed_image = g.trellis_pipeline.preprocess_image(image)
        if processed_image is not None:
            save_path = f"{TMP_DIR}/{trial_id}.png"
            processed_image.save(save_path)
            print(f"Saved processed image to: {save_path}")
            return trial_id, processed_image
        else:
            print("Error: Processed image is None")
            return "", None
    except Exception as e:
        print(f"Error in image preprocessing: {str(e)}")
        return "", None
        
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']

@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, 
                ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
    try:
        # ์ดˆ๊ธฐ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
        clear_gpu_memory()
        
        if not trial_id or trial_id.strip() == "":
            return None, None
            
        image_path = f"{TMP_DIR}/{trial_id}.png"
        if not os.path.exists(image_path):
            return None, None
            
        image = Image.open(image_path)
        
        # ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์ œํ•œ ๊ฐ•ํ™”
        max_size = 384  # ๋” ์ž‘์€ ํฌ๊ธฐ๋กœ ์ œํ•œ
        if max(image.size) > max_size:
            ratio = max_size / max(image.size)
            new_size = tuple(int(dim * ratio) for dim in image.size)
            image = image.resize(new_size, Image.LANCZOS)
        
        with torch.inference_mode():
            try:
                # ํŒŒ์ดํ”„๋ผ์ธ์„ GPU๋กœ ์ด๋™
                g.trellis_pipeline.to('cuda')
                
                # ๋ฐฐ์น˜ ํฌ๊ธฐ ์ œํ•œ
                outputs = g.trellis_pipeline.run(
                    image,
                    seed=seed,
                    formats=["gaussian", "mesh"],
                    preprocess_image=False,
                    sparse_structure_sampler_params={
                        "steps": min(ss_sampling_steps, 8),  # ์Šคํ… ์ˆ˜ ์ œํ•œ
                        "cfg_strength": ss_guidance_strength,
                        "batch_size": 1  # ๋ฐฐ์น˜ ํฌ๊ธฐ ๋ช…์‹œ์  ์ œํ•œ
                    },
                    slat_sampler_params={
                        "steps": min(slat_sampling_steps, 8),  # ์Šคํ… ์ˆ˜ ์ œํ•œ
                        "cfg_strength": slat_guidance_strength,
                        "batch_size": 1
                    },
                )
                
                # ์ค‘๊ฐ„ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
                clear_gpu_memory()
                
                # ๋น„๋””์˜ค ๋ Œ๋”๋ง ์ตœ์ ํ™”
                video = render_utils.render_video(
                    outputs['gaussian'][0],
                    num_frames=30,  # ํ”„๋ ˆ์ž„ ์ˆ˜ ๊ฐ์†Œ
                    resolution=384  # ํ•ด์ƒ๋„ ์ œํ•œ
                )['color']
                
                video_geo = render_utils.render_video(
                    outputs['mesh'][0],
                    num_frames=30,
                    resolution=384
                )['normal']
                
                # CPU๋กœ ๋ฐ์ดํ„ฐ ์ด๋™ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์ •๋ฆฌ
                video = [v.cpu().numpy() for v in video]
                video_geo = [v.cpu().numpy() for v in video_geo]
                clear_gpu_memory()
                
                # ๋‚˜๋จธ์ง€ ์ฒ˜๋ฆฌ
                video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
                new_trial_id = str(uuid.uuid4())
                video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
                imageio.mimsave(video_path, video, fps=15)
                
                state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
                return state, video_path
                
            finally:
                # ์ •๋ฆฌ ์ž‘์—…
                g.trellis_pipeline.to('cpu')
                clear_gpu_memory()
                
    except Exception as e:
        print(f"Error in image_to_3d: {str(e)}")
        g.trellis_pipeline.to('cpu')
        clear_gpu_memory()
        return None, None

def clear_gpu_memory():
    """GPU ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ๋” ์ฒ ์ €ํ•˜๊ฒŒ ์ •๋ฆฌํ•˜๋Š” ํ•จ์ˆ˜"""
    try:
        if torch.cuda.is_available():
            # ๋ชจ๋“  GPU ์บ์‹œ ์ •๋ฆฌ
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            
            # ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ์บ์‹œ๋œ ๋ฉ”๋ชจ๋ฆฌ ํ•ด์ œ
            for i in range(torch.cuda.device_count()):
                with torch.cuda.device(i):
                    torch.cuda.empty_cache()
                    torch.cuda.ipc_collect()
                    
        # Python ๊ฐ€๋น„์ง€ ์ปฌ๋ ‰ํ„ฐ ์‹คํ–‰
        gc.collect()
    except Exception as e:
        print(f"Error in clear_gpu_memory: {e}")

def move_to_device(model, device):
    """๋ชจ๋ธ์„ ์•ˆ์ „ํ•˜๊ฒŒ ๋””๋ฐ”์ด์Šค๋กœ ์ด๋™ํ•˜๋Š” ํ•จ์ˆ˜"""
    try:
        if hasattr(model, 'to'):
            clear_gpu_memory()
            model.to(device)
            if device == 'cuda':
                torch.cuda.synchronize()
            clear_gpu_memory()
    except Exception as e:
        print(f"Error moving model to {device}: {str(e)}")
        
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    """
    3D ๋ชจ๋ธ์—์„œ GLB ํŒŒ์ผ ์ถ”์ถœ
    """
    try:
        gs, mesh, trial_id = unpack_state(state)
        glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
        glb_path = f"{TMP_DIR}/{trial_id}.glb"
        glb.export(glb_path)
        return glb_path, glb_path
    except Exception as e:
        print(f"GLB ์ถ”์ถœ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {e}")
        return None, None



def activate_button() -> gr.Button:
    return gr.Button(interactive=True)


def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)

@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
    try:
        # CUDA ๋ฉ”๋ชจ๋ฆฌ ์ดˆ๊ธฐํ™”
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()
        
        # ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
        def contains_korean(text):
            return any(ord('๊ฐ€') <= ord(c) <= ord('ํžฃ') for c in text)
        
        if contains_korean(prompt):
            # Helsinki-NLP/opus-mt-ko-en ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฒˆ์—ญ
            translated = g.translator(prompt)[0]['translation_text']
            prompt = translated
            print(f"Translated prompt: {prompt}")
        
        formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
        
        # ํฌ๊ธฐ ์ œํ•œ
        height = min(height, 512)
        width = min(width, 512)
        steps = min(steps, 12)
        
        with torch.inference_mode():
            generated_image = g.flux_pipe(
                prompt=[formatted_prompt],
                generator=torch.Generator('cuda').manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
            
            if generated_image is not None:
                trial_id = str(uuid.uuid4())
                save_path = f"{TMP_DIR}/{trial_id}.png"
                generated_image.save(save_path)
                print(f"Saved generated image to: {save_path}")
                return generated_image
            else:
                print("Error: Generated image is None")
                return None
                
    except Exception as e:
        print(f"Error in image generation: {str(e)}")
        return None
    finally:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""## Craft3D""")
    
    # Examples ์ด๋ฏธ์ง€ ๋กœ๋“œ
    example_dir = "assets/example_image/"
    example_images = []
    if os.path.exists(example_dir):
        for file in os.listdir(example_dir):
            if file.endswith('.webp'):
                example_images.append(os.path.join(example_dir, file))
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(
                label="Text Prompt",
                placeholder="Describe what you want to create...",
                lines=3
            )
            
            # ์ด๋ฏธ์ง€ ํ”„๋กฌํ”„ํŠธ
            image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
            
            with gr.Accordion("Image Generation Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                seed = gr.Number(
                    label="Seed",
                    value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
                    precision=0
                )
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            
            generate_image_btn = gr.Button("Generate Image")
            
            with gr.Accordion("3D Generation Settings", open=False):
                ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
                ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
                slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
                slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)

            generate_3d_btn = gr.Button("Generate 3D")
            
            with gr.Accordion("GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
    
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()

    # Examples ๊ฐค๋Ÿฌ๋ฆฌ๋ฅผ ๋งจ ์•„๋ž˜๋กœ ์ด๋™
    if example_images:
        gr.Markdown("""### Example Images""")
        with gr.Row():
            gallery = gr.Gallery(
                value=example_images,
                label="Click an image to use it",
                show_label=True,
                elem_id="gallery",
                columns=11,  # ํ•œ ์ค„์— 12๊ฐœ
                rows=3,      # 2์ค„
                height=400,  # ๋†’์ด ์กฐ์ •
                allow_preview=True,
                object_fit="contain"  # ์ด๋ฏธ์ง€ ๋น„์œจ ์œ ์ง€
            )
            
            def load_example(evt: gr.SelectData):
                selected_image = Image.open(example_images[evt.index])
                trial_id_val, processed_image = preprocess_image(selected_image)
                return selected_image, trial_id_val
            
            gallery.select(
                load_example,
                None,
                [image_prompt, trial_id],
                show_progress=True
            )

    # Handlers
    generate_image_btn.click(
        text_to_image,
        inputs=[text_prompt, height, width, steps, scales, seed],
        outputs=[image_prompt]
    ).then(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt]
    )

    # ๋‚˜๋จธ์ง€ ํ•ธ๋“ค๋Ÿฌ๋“ค
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_3d_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        activate_button,
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        deactivate_button,
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        activate_button,
        outputs=[download_glb],
    )

    model_output.clear(
        deactivate_button,
        outputs=[download_glb],
    )

if __name__ == "__main__":
    try:
        # CPU๋กœ ์ดˆ๊ธฐํ™”
        device = "cpu"
        print(f"Using device: {device}")
        
        # ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
        initialize_models(device)
        
        # ์ดˆ๊ธฐ ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ ํ…Œ์ŠคํŠธ
        try:
            test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
            if g.trellis_pipeline is not None:
                g.trellis_pipeline.preprocess_image(test_image)
            else:
                print("Warning: trellis_pipeline is None")
        except Exception as e:
            print(f"Warning: Initial preprocessing test failed: {e}")
            
        # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
        demo.queue()  # ํ ๊ธฐ๋Šฅ ํ™œ์„ฑํ™”
        demo.launch(
            allowed_paths=[PERSISTENT_DIR, TMP_DIR],
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True
        )
        
    except Exception as e:
        print(f"Error during initialization: {e}")
        raise