Spaces:
Sleeping
Sleeping
# AsyncWorkflow Documentation | |
The `AsyncWorkflow` class represents an asynchronous workflow that executes tasks concurrently using multiple agents. It allows for efficient task management, leveraging Python's `asyncio` for concurrent execution. | |
## Key Features | |
- **Concurrent Task Execution**: Distribute tasks across multiple agents asynchronously. | |
- **Configurable Workers**: Limit the number of concurrent workers (agents) for better resource management. | |
- **Autosave Results**: Optionally save the task execution results automatically. | |
- **Verbose Logging**: Enable detailed logging to monitor task execution. | |
- **Error Handling**: Gracefully handles exceptions raised by agents during task execution. | |
--- | |
## Attributes | |
| Attribute | Type | Description | | |
|-------------------|---------------------|-----------------------------------------------------------------------------| | |
| `name` | `str` | The name of the workflow. | | |
| `agents` | `List[Agent]` | A list of agents participating in the workflow. | | |
| `max_workers` | `int` | The maximum number of concurrent workers (default: 5). | | |
| `dashboard` | `bool` | Whether to display a dashboard (currently not implemented). | | |
| `autosave` | `bool` | Whether to autosave task results (default: `False`). | | |
| `verbose` | `bool` | Whether to enable detailed logging (default: `False`). | | |
| `task_pool` | `List` | A pool of tasks to be executed. | | |
| `results` | `List` | A list to store results of executed tasks. | | |
| `loop` | `asyncio.EventLoop` | The event loop for asynchronous execution. | | |
--- | |
**Description**: | |
Initializes the `AsyncWorkflow` with specified agents, configuration, and options. | |
**Parameters**: | |
- `name` (`str`): Name of the workflow. Default: "AsyncWorkflow". | |
- `agents` (`List[Agent]`): A list of agents. Default: `None`. | |
- `max_workers` (`int`): The maximum number of workers. Default: `5`. | |
- `dashboard` (`bool`): Enable dashboard visualization (placeholder for future implementation). | |
- `autosave` (`bool`): Enable autosave of task results. Default: `False`. | |
- `verbose` (`bool`): Enable detailed logging. Default: `False`. | |
- `**kwargs`: Additional parameters for `BaseWorkflow`. | |
--- | |
### `_execute_agent_task` | |
```python | |
async def _execute_agent_task(self, agent: Agent, task: str) -> Any: | |
``` | |
**Description**: | |
Executes a single task asynchronously using a given agent. | |
**Parameters**: | |
- `agent` (`Agent`): The agent responsible for executing the task. | |
- `task` (`str`): The task to be executed. | |
**Returns**: | |
- `Any`: The result of the task execution or an error message in case of an exception. | |
**Example**: | |
```python | |
result = await workflow._execute_agent_task(agent, "Sample Task") | |
``` | |
--- | |
### `run` | |
```python | |
async def run(self, task: str) -> List[Any]: | |
``` | |
**Description**: | |
Executes the specified task concurrently across all agents. | |
**Parameters**: | |
- `task` (`str`): The task to be executed by all agents. | |
**Returns**: | |
- `List[Any]`: A list of results or error messages returned by the agents. | |
**Raises**: | |
- `ValueError`: If no agents are provided in the workflow. | |
**Example**: | |
```python | |
import asyncio | |
agents = [Agent("Agent1"), Agent("Agent2")] | |
workflow = AsyncWorkflow(agents=agents, verbose=True) | |
results = asyncio.run(workflow.run("Process Data")) | |
print(results) | |
``` | |
--- | |
## Production-Grade Financial Example: Multiple Agents | |
### Example: Stock Analysis and Investment Strategy | |
```python | |
import asyncio | |
from typing import List | |
from swarm_models import OpenAIChat | |
from swarms.structs.async_workflow import ( | |
SpeakerConfig, | |
SpeakerRole, | |
create_default_workflow, | |
run_workflow_with_retry, | |
) | |
from swarms.prompts.finance_agent_sys_prompt import ( | |
FINANCIAL_AGENT_SYS_PROMPT, | |
) | |
from swarms.structs.agent import Agent | |
async def create_specialized_agents() -> List[Agent]: | |
"""Create a set of specialized agents for financial analysis""" | |
# Base model configuration | |
model = OpenAIChat(model_name="gpt-4o") | |
# Financial Analysis Agent | |
financial_agent = Agent( | |
agent_name="Financial-Analysis-Agent", | |
agent_description="Personal finance advisor agent", | |
system_prompt=FINANCIAL_AGENT_SYS_PROMPT | |
+ "Output the <DONE> token when you're done creating a portfolio of etfs, index, funds, and more for AI", | |
max_loops=1, | |
llm=model, | |
dynamic_temperature_enabled=True, | |
user_name="Kye", | |
retry_attempts=3, | |
context_length=8192, | |
return_step_meta=False, | |
output_type="str", | |
auto_generate_prompt=False, | |
max_tokens=4000, | |
stopping_token="<DONE>", | |
saved_state_path="financial_agent.json", | |
interactive=False, | |
) | |
# Risk Assessment Agent | |
risk_agent = Agent( | |
agent_name="Risk-Assessment-Agent", | |
agent_description="Investment risk analysis specialist", | |
system_prompt="Analyze investment risks and provide risk scores. Output <DONE> when analysis is complete.", | |
max_loops=1, | |
llm=model, | |
dynamic_temperature_enabled=True, | |
user_name="Kye", | |
retry_attempts=3, | |
context_length=8192, | |
output_type="str", | |
max_tokens=4000, | |
stopping_token="<DONE>", | |
saved_state_path="risk_agent.json", | |
interactive=False, | |
) | |
# Market Research Agent | |
research_agent = Agent( | |
agent_name="Market-Research-Agent", | |
agent_description="AI and tech market research specialist", | |
system_prompt="Research AI market trends and growth opportunities. Output <DONE> when research is complete.", | |
max_loops=1, | |
llm=model, | |
dynamic_temperature_enabled=True, | |
user_name="Kye", | |
retry_attempts=3, | |
context_length=8192, | |
output_type="str", | |
max_tokens=4000, | |
stopping_token="<DONE>", | |
saved_state_path="research_agent.json", | |
interactive=False, | |
) | |
return [financial_agent, risk_agent, research_agent] | |
async def main(): | |
# Create specialized agents | |
agents = await create_specialized_agents() | |
# Create workflow with group chat enabled | |
workflow = create_default_workflow( | |
agents=agents, | |
name="AI-Investment-Analysis-Workflow", | |
enable_group_chat=True, | |
) | |
# Configure speaker roles | |
workflow.speaker_system.add_speaker( | |
SpeakerConfig( | |
role=SpeakerRole.COORDINATOR, | |
agent=agents[0], # Financial agent as coordinator | |
priority=1, | |
concurrent=False, | |
required=True, | |
) | |
) | |
workflow.speaker_system.add_speaker( | |
SpeakerConfig( | |
role=SpeakerRole.CRITIC, | |
agent=agents[1], # Risk agent as critic | |
priority=2, | |
concurrent=True, | |
) | |
) | |
workflow.speaker_system.add_speaker( | |
SpeakerConfig( | |
role=SpeakerRole.EXECUTOR, | |
agent=agents[2], # Research agent as executor | |
priority=2, | |
concurrent=True, | |
) | |
) | |
# Investment analysis task | |
investment_task = """ | |
Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities: | |
1. Identify high-growth AI ETFs and index funds | |
2. Analyze risks and potential returns | |
3. Create a diversified portfolio allocation | |
4. Provide market trend analysis | |
Present the results in a structured markdown format. | |
""" | |
try: | |
# Run workflow with retry | |
result = await run_workflow_with_retry( | |
workflow=workflow, task=investment_task, max_retries=3 | |
) | |
print("\nWorkflow Results:") | |
print("================") | |
# Process and display agent outputs | |
for output in result.agent_outputs: | |
print(f"\nAgent: {output.agent_name}") | |
print("-" * (len(output.agent_name) + 8)) | |
print(output.output) | |
# Display group chat history if enabled | |
if workflow.enable_group_chat: | |
print("\nGroup Chat Discussion:") | |
print("=====================") | |
for msg in workflow.speaker_system.message_history: | |
print(f"\n{msg.role} ({msg.agent_name}):") | |
print(msg.content) | |
# Save detailed results | |
if result.metadata.get("shared_memory_keys"): | |
print("\nShared Insights:") | |
print("===============") | |
for key in result.metadata["shared_memory_keys"]: | |
value = workflow.shared_memory.get(key) | |
if value: | |
print(f"\n{key}:") | |
print(value) | |
except Exception as e: | |
print(f"Workflow failed: {str(e)}") | |
finally: | |
await workflow.cleanup() | |
if __name__ == "__main__": | |
# Run the example | |
asyncio.run(main()) | |
``` | |
--- | |