StdGEN / infer_refine.py
YulianSa's picture
Add application file
ef198e0
raw
history blame
16.5 kB
import cv2
import numpy as np
import os
import trimesh
import argparse
import torch
import scipy
from PIL import Image
from refine.mesh_refine import geo_refine
from refine.func import make_star_cameras_orthographic
from refine.render import NormalsRenderer, calc_vertex_normals
from pytorch3d.structures import Meshes
from sklearn.neighbors import KDTree
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
sam = sam_model_registry["vit_h"](checkpoint="./ckpt/sam_vit_h_4b8939.pth").cuda()
generator = SamAutomaticMaskGenerator(
model=sam,
points_per_side=64,
pred_iou_thresh=0.80,
stability_score_thresh=0.92,
crop_n_layers=1,
crop_n_points_downscale_factor=2,
min_mask_region_area=100,
)
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1.001, f"min={np_color.min()}, max={np_color.max()}"
np_color = np.clip(np_color, 0, 1)
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
def calc_horizontal_offset(target_img, source_img):
target_mask = target_img.astype(np.float32).sum(axis=-1) > 750
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
def calc_horizontal_offset2(target_mask, source_img):
source_mask = source_img.astype(np.float32).sum(axis=-1) > 750
best_offset = -114514
for offset in range(-200, 200):
offset_mask = np.roll(source_mask, offset, axis=1)
overlap = (target_mask & offset_mask).sum()
if overlap > best_offset:
best_offset = overlap
best_offset_value = offset
return best_offset_value
def get_distract_mask(color_0, color_1, normal_0=None, normal_1=None, thres=0.25, ratio=0.50, outside_thres=0.10, outside_ratio=0.20):
distract_area = np.abs(color_0 - color_1).sum(axis=-1) > thres
if normal_0 is not None and normal_1 is not None:
distract_area |= np.abs(normal_0 - normal_1).sum(axis=-1) > thres
labeled_array, num_features = scipy.ndimage.label(distract_area)
results = []
random_sampled_points = []
for i in range(num_features + 1):
if np.sum(labeled_array == i) > 1000 and np.sum(labeled_array == i) < 100000:
results.append((i, np.sum(labeled_array == i)))
# random sample a point in the area
points = np.argwhere(labeled_array == i)
random_sampled_points.append(points[np.random.randint(0, points.shape[0])])
results = sorted(results, key=lambda x: x[1], reverse=True) # [1:]
distract_mask = np.zeros_like(distract_area)
distract_bbox = np.zeros_like(distract_area)
for i, _ in results:
distract_mask |= labeled_array == i
bbox = np.argwhere(labeled_array == i)
min_x, min_y = bbox.min(axis=0)
max_x, max_y = bbox.max(axis=0)
distract_bbox[min_x:max_x, min_y:max_y] = 1
points = np.array(random_sampled_points)[:, ::-1]
labels = np.ones(len(points), dtype=np.int32)
masks = generator.generate((color_1 * 255).astype(np.uint8))
outside_area = np.abs(color_0 - color_1).sum(axis=-1) < outside_thres
final_mask = np.zeros_like(distract_mask)
for iii, mask in enumerate(masks):
mask['segmentation'] = cv2.resize(mask['segmentation'].astype(np.float32), (1024, 1024)) > 0.5
intersection = np.logical_and(mask['segmentation'], distract_mask).sum()
total = mask['segmentation'].sum()
iou = intersection / total
outside_intersection = np.logical_and(mask['segmentation'], outside_area).sum()
outside_total = mask['segmentation'].sum()
outside_iou = outside_intersection / outside_total
if iou > ratio and outside_iou < outside_ratio:
final_mask |= mask['segmentation']
# calculate coverage
intersection = np.logical_and(final_mask, distract_mask).sum()
total = distract_mask.sum()
coverage = intersection / total
if coverage < 0.8:
# use original distract mask
final_mask = (distract_mask.copy() * 255).astype(np.uint8)
final_mask = cv2.dilate(final_mask, np.ones((3, 3), np.uint8), iterations=3)
labeled_array_dilate, num_features_dilate = scipy.ndimage.label(final_mask)
for i in range(num_features_dilate + 1):
if np.sum(labeled_array_dilate == i) < 200:
final_mask[labeled_array_dilate == i] = 255
final_mask = cv2.erode(final_mask, np.ones((3, 3), np.uint8), iterations=3)
final_mask = final_mask > 127
return distract_mask, distract_bbox, random_sampled_points, final_mask
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input_mv_dir', type=str, default='result/multiview')
parser.add_argument('--input_obj_dir', type=str, default='result/slrm')
parser.add_argument('--output_dir', type=str, default='result/refined')
parser.add_argument('--outside_ratio', type=float, default=0.20)
parser.add_argument('--no_decompose', action='store_true')
args = parser.parse_args()
for test_idx in os.listdir(args.input_mv_dir):
mv_root_dir = os.path.join(args.input_mv_dir, test_idx)
obj_dir = os.path.join(args.input_obj_dir, test_idx)
fixed_v, fixed_f = None, None
flow_vert, flow_vector = None, None
last_colors, last_normals = None, None
last_front_color, last_front_normal = None, None
distract_mask = None
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,(1024,1024))
if not args.no_decompose:
for name_idx, level in zip([3, 1, 2], [2, 1, 0]):
mesh = trimesh.load(obj_dir + f'_{name_idx}.obj')
new_mesh = mesh.split(only_watertight=False)
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 300 ]
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
mesh_v, mesh_f = mesh.vertices, mesh.faces
if last_colors is None:
images = renderer.render(
torch.tensor(mesh_v, device='cuda').float(),
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
torch.tensor(mesh_f, device='cuda'),
)
mask = (images[..., 3] < 0.9).cpu().numpy()
colors, normals = [], []
for i in range(6):
color_path = os.path.join(mv_root_dir, f'level{level}', f'color_{i}.png')
normal_path = os.path.join(mv_root_dir, f'level{level}', f'normal_{i}.png')
color = cv2.imread(color_path)
normal = cv2.imread(normal_path)
color = color[..., ::-1]
normal = normal[..., ::-1]
if last_colors is not None:
offset = calc_horizontal_offset(np.array(last_colors[i]), color)
# print('offset', i, offset)
else:
offset = calc_horizontal_offset2(mask[i], color)
# print('init offset', i, offset)
if offset != 0:
color = np.roll(color, offset, axis=1)
normal = np.roll(normal, offset, axis=1)
color = Image.fromarray(color)
normal = Image.fromarray(normal)
colors.append(color)
normals.append(normal)
if last_front_color is not None and level == 0:
original_mask, distract_bbox, _, distract_mask = get_distract_mask(last_front_color, np.array(colors[0]).astype(np.float32) / 255.0, outside_ratio=args.outside_ratio)
cv2.imwrite(f'{args.output_dir}/{test_idx}/distract_mask.png', distract_mask.astype(np.uint8) * 255)
else:
distract_mask = None
distract_bbox = None
last_front_color = np.array(colors[0]).astype(np.float32) / 255.0
last_front_normal = np.array(normals[0]).astype(np.float32) / 255.0
if last_colors is None:
from copy import deepcopy
last_colors, last_normals = deepcopy(colors), deepcopy(normals)
# my mesh flow weight by nearest vertexs
if fixed_v is not None and fixed_f is not None and level == 1:
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(mesh_v)
_, idx_anchor = kdtree_anchor.query(mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
mesh_v += weighted_vec_anchor.cpu().numpy()
t = trimesh.Trimesh(vertices=mesh_v, faces=mesh_f)
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
mesh_f = torch.tensor(mesh_f, device='cuda')
new_mesh, simp_v, simp_f = geo_refine(mesh_v, mesh_f, colors, normals, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask, distract_bbox=distract_bbox)
# my mesh flow weight by nearest vertexs
try:
if fixed_v is not None and fixed_f is not None and level != 0:
new_mesh_v = new_mesh.verts_packed().cpu().numpy()
fixed_v_cpu = fixed_v.cpu().numpy()
kdtree_anchor = KDTree(fixed_v_cpu)
kdtree_mesh_v = KDTree(new_mesh_v)
_, idx_anchor = kdtree_anchor.query(new_mesh_v, k=1)
_, idx_mesh_v = kdtree_mesh_v.query(new_mesh_v, k=25)
idx_anchor = idx_anchor.squeeze()
neighbors = torch.tensor(new_mesh_v).cuda()[idx_mesh_v] # V, 25, 3
# calculate the distances neighbors [V, 25, 3]; new_mesh_v [V, 3] -> [V, 25]
neighbor_dists = torch.norm(neighbors - torch.tensor(new_mesh_v).cuda()[:, None], dim=-1)
neighbor_dists[neighbor_dists > 0.06] = 114514.
neighbor_weights = torch.exp(-neighbor_dists * 1.)
neighbor_weights = neighbor_weights / neighbor_weights.sum(dim=1, keepdim=True)
anchors = fixed_v[idx_anchor] # V, 3
anchor_normals = calc_vertex_normals(fixed_v, fixed_f)[idx_anchor] # V, 3
dis_anchor = torch.clamp(((anchors - torch.tensor(new_mesh_v).cuda()) * anchor_normals).sum(-1), min=0) + 0.01
vec_anchor = dis_anchor[:, None] * anchor_normals # V, 3
vec_anchor = vec_anchor[idx_mesh_v] # V, 25, 3
weighted_vec_anchor = (vec_anchor * neighbor_weights[:, :, None]).sum(1) # V, 3
new_mesh_v += weighted_vec_anchor.cpu().numpy()
# replace new_mesh verts with new_mesh_v
new_mesh = Meshes(verts=[torch.tensor(new_mesh_v, device='cuda')], faces=new_mesh.faces_list(), textures=new_mesh.textures)
except Exception as e:
pass
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_{level}.glb', apply_sRGB_to_LinearRGB=False)
if fixed_v is None:
fixed_v, fixed_f = simp_v, simp_f
else:
fixed_f = torch.cat([fixed_f, simp_f + fixed_v.shape[0]], dim=0)
fixed_v = torch.cat([fixed_v, simp_v], dim=0)
else:
mesh = trimesh.load(obj_dir + f'_0.obj')
mesh_v, mesh_f = mesh.vertices, mesh.faces
images = renderer.render(
torch.tensor(mesh_v, device='cuda').float(),
torch.ones_like(torch.from_numpy(mesh_v), device='cuda').float(),
torch.tensor(mesh_f, device='cuda'),
)
mask = (images[..., 3] < 0.9).cpu().numpy()
colors, normals = [], []
for i in range(6):
color_path = os.path.join(mv_root_dir, f'level0', f'color_{i}.png')
normal_path = os.path.join(mv_root_dir, f'level0', f'normal_{i}.png')
color = cv2.imread(color_path)
normal = cv2.imread(normal_path)
color = color[..., ::-1]
normal = normal[..., ::-1]
offset = calc_horizontal_offset2(mask[i], color)
if offset != 0:
color = np.roll(color, offset, axis=1)
normal = np.roll(normal, offset, axis=1)
color = Image.fromarray(color)
normal = Image.fromarray(normal)
colors.append(color)
normals.append(normal)
mesh_v = torch.tensor(mesh_v, device='cuda', dtype=torch.float32)
mesh_f = torch.tensor(mesh_f, device='cuda')
new_mesh, _, _ = geo_refine(mesh_v, mesh_f, colors, normals, no_decompose=True, expansion_weight=0.)
os.makedirs(f'{args.output_dir}/{test_idx}', exist_ok=True)
save_py3dmesh_with_trimesh_fast(new_mesh, f'{args.output_dir}/{test_idx}/out_nodecomp.glb', apply_sRGB_to_LinearRGB=False)