StdGEN / infer_slrm.py
YulianSa's picture
Add application file
ef198e0
raw
history blame
6.97 kB
import os
import imageio
import numpy as np
import torch
import cv2
import glob
import matplotlib.pyplot as plt
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from tqdm import tqdm
from slrm.utils.train_util import instantiate_from_config
from slrm.utils.camera_util import (
FOV_to_intrinsics,
get_circular_camera_poses,
)
from slrm.utils.mesh_util import save_obj, save_glb
from slrm.utils.infer_util import images_to_video
from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
"""
Get the rendering camera parameters.
"""
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def images_to_video(images, output_dir, fps=30):
# images: (N, C, H, W)
os.makedirs(os.path.dirname(output_dir), exist_ok=True)
frames = []
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
assert frame.min() >= 0 and frame.max() <= 255, \
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
frames.append(frame)
imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264')
###############################################################################
# Configuration.
###############################################################################
seed_everything(0)
config_path = 'configs/mesh-slrm-infer.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('mesh') else False
device = torch.device('cuda')
# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
state_dict = torch.load(infer_config.model_path, map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model = model.to(device)
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho)
model = model.eval()
print('Loading Finished!')
def make_mesh(mesh_fpath, planes, level=None):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
# get mesh
mesh_out = model.extract_mesh(
planes,
use_texture_map=False,
levels=torch.tensor([level]).to(device),
**infer_config,
)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, mesh_fpath)
return mesh_fpath, mesh_glb_fpath
def make3d(images, name, output_dir):
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device)
render_cameras = get_render_cameras(
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = os.path.join(output_dir, f"{name}.obj")
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras.float())
# get video
chunk_size = 20 if IS_FLEXICUBES else 1
render_size = 512
frames = [ [] for _ in range(4) ]
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if IS_FLEXICUBES:
frame = model.forward_geometry_separate(
planes,
render_cameras[:, i:i+chunk_size],
render_size=render_size,
levels=torch.tensor([0]).to(device),
)['imgs']
for j in range(4):
frames[j].append(frame[j])
else:
frame = model.synthesizer(
planes,
cameras=render_cameras[:, i:i+chunk_size],
render_size=render_size,
)['images_rgb']
frames.append(frame)
for j in range(4):
frames[j] = torch.cat(frames[j], dim=1)
video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4')
images_to_video(
frames[j][0],
video_fpath_j,
fps=30,
)
_, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j])
return video_fpath, mesh_fpath, mesh_glb_fpath
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', type=str, default="result/multiview")
parser.add_argument('--output_dir', type=str, default="result/slrm")
args = parser.parse_args()
paths = glob.glob(args.input_dir + '/*')
os.makedirs(args.output_dir, exist_ok=True)
def load_rgb(path):
img = plt.imread(path)
img = Image.fromarray(np.uint8(img * 255.))
return img
for path in tqdm(paths):
name = path.split('/')[-1]
index_targets = [
'level0/color_0.png',
'level0/color_1.png',
'level0/color_2.png',
'level0/color_3.png',
'level0/color_4.png',
'level0/color_5.png',
]
imgs = []
for index_target in index_targets:
img = load_rgb(os.path.join(path, index_target))
imgs.append(img)
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024)
video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir)