Spaces:
Running
on
L40S
Running
on
L40S
import os | |
import imageio | |
import numpy as np | |
import torch | |
import cv2 | |
import glob | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from torchvision.transforms import v2 | |
from pytorch_lightning import seed_everything | |
from omegaconf import OmegaConf | |
from tqdm import tqdm | |
from slrm.utils.train_util import instantiate_from_config | |
from slrm.utils.camera_util import ( | |
FOV_to_intrinsics, | |
get_circular_camera_poses, | |
) | |
from slrm.utils.mesh_util import save_obj, save_glb | |
from slrm.utils.infer_util import images_to_video | |
from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
""" | |
Get the rendering camera parameters. | |
""" | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
def images_to_video(images, output_dir, fps=30): | |
# images: (N, C, H, W) | |
os.makedirs(os.path.dirname(output_dir), exist_ok=True) | |
frames = [] | |
for i in range(images.shape[0]): | |
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) | |
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
assert frame.min() >= 0 and frame.max() <= 255, \ | |
f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
frames.append(frame) | |
imageio.mimwrite(output_dir, np.stack(frames), fps=fps, codec='h264') | |
############################################################################### | |
# Configuration. | |
############################################################################### | |
seed_everything(0) | |
config_path = 'configs/mesh-slrm-infer.yaml' | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace('.yaml', '') | |
model_config = config.model_config | |
infer_config = config.infer_config | |
IS_FLEXICUBES = True if config_name.startswith('mesh') else False | |
device = torch.device('cuda') | |
# load reconstruction model | |
print('Loading reconstruction model ...') | |
model = instantiate_from_config(model_config) | |
state_dict = torch.load(infer_config.model_path, map_location='cpu') | |
model.load_state_dict(state_dict, strict=False) | |
model = model.to(device) | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, fovy=30.0, is_ortho=model.is_ortho) | |
model = model.eval() | |
print('Loading Finished!') | |
def make_mesh(mesh_fpath, planes, level=None): | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
# get mesh | |
mesh_out = model.extract_mesh( | |
planes, | |
use_texture_map=False, | |
levels=torch.tensor([level]).to(device), | |
**infer_config, | |
) | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
return mesh_fpath, mesh_glb_fpath | |
def make3d(images, name, output_dir): | |
input_cameras = torch.tensor(np.load('slrm/cameras.npy')).to(device) | |
render_cameras = get_render_cameras( | |
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
mesh_fpath = os.path.join(output_dir, f"{name}.obj") | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") | |
with torch.no_grad(): | |
# get triplane | |
planes = model.forward_planes(images, input_cameras.float()) | |
# get video | |
chunk_size = 20 if IS_FLEXICUBES else 1 | |
render_size = 512 | |
frames = [ [] for _ in range(4) ] | |
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): | |
if IS_FLEXICUBES: | |
frame = model.forward_geometry_separate( | |
planes, | |
render_cameras[:, i:i+chunk_size], | |
render_size=render_size, | |
levels=torch.tensor([0]).to(device), | |
)['imgs'] | |
for j in range(4): | |
frames[j].append(frame[j]) | |
else: | |
frame = model.synthesizer( | |
planes, | |
cameras=render_cameras[:, i:i+chunk_size], | |
render_size=render_size, | |
)['images_rgb'] | |
frames.append(frame) | |
for j in range(4): | |
frames[j] = torch.cat(frames[j], dim=1) | |
video_fpath_j = video_fpath.replace('.mp4', f'_{j}.mp4') | |
images_to_video( | |
frames[j][0], | |
video_fpath_j, | |
fps=30, | |
) | |
_, mesh_glb_fpath = make_mesh(mesh_fpath.replace(mesh_fpath[-4:], f'_{j}{mesh_fpath[-4:]}'), planes, level=[0, 3, 4, 2][j]) | |
return video_fpath, mesh_fpath, mesh_glb_fpath | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_dir', type=str, default="result/multiview") | |
parser.add_argument('--output_dir', type=str, default="result/slrm") | |
args = parser.parse_args() | |
paths = glob.glob(args.input_dir + '/*') | |
os.makedirs(args.output_dir, exist_ok=True) | |
def load_rgb(path): | |
img = plt.imread(path) | |
img = Image.fromarray(np.uint8(img * 255.)) | |
return img | |
for path in tqdm(paths): | |
name = path.split('/')[-1] | |
index_targets = [ | |
'level0/color_0.png', | |
'level0/color_1.png', | |
'level0/color_2.png', | |
'level0/color_3.png', | |
'level0/color_4.png', | |
'level0/color_5.png', | |
] | |
imgs = [] | |
for index_target in index_targets: | |
img = load_rgb(os.path.join(path, index_target)) | |
imgs.append(img) | |
imgs = np.stack(imgs, axis=0).astype(np.float32) / 255.0 | |
imgs = torch.from_numpy(np.array(imgs)).permute(0, 3, 1, 2).contiguous().float() # (6, 3, 1024, 1024) | |
video_fpath, mesh_fpath, mesh_glb_fpath = make3d(imgs, name, args.output_dir) | |