Spaces:
Build error
Build error
File size: 7,316 Bytes
8e34f80 7ecd689 8e34f80 7ecd689 125e1ba 7ecd689 0f9d382 35e0000 7ecd689 53dde32 35e0000 7ecd689 8e34f80 7ecd689 35e0000 7ecd689 35e0000 7ecd689 8e34f80 7ecd689 35e0000 7ecd689 2a7a772 7ecd689 8e34f80 35e0000 7ecd689 35e0000 2a7a772 ab23201 2a7a772 ab23201 53dde32 125e1ba bba9de5 53dde32 cf785f9 2a7a772 8b69d1b bba9de5 cf785f9 53dde32 7ecd689 125e1ba 7ecd689 125e1ba 7ecd689 26c12e7 125e1ba 26c12e7 125e1ba 26c12e7 125e1ba 15b96ac 125e1ba 35e0000 125e1ba 2a7a772 125e1ba 8e34f80 ee4f4a6 8b69d1b bba9de5 26c12e7 125e1ba ee4f4a6 4c0fb4c 26c12e7 0041559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import torch
from PIL import Image
import pandas as pd
from lavis.models import load_model_and_preprocess
from lavis.processors import load_processor
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
import tensorflow as tf
import tensorflow_hub as hub
import io
from sklearn.metrics.pairwise import cosine_similarity
import tempfile # Add this import
import logging
import os
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load model and preprocessors for Image-Text Matching (LAVIS)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
# Load tokenizer and model for Image Captioning (TextCaps)
git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
# Load Universal Sentence Encoder model for textual similarity calculation
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
# Define a function to compute textual similarity between caption and statement
def compute_textual_similarity(caption, statement):
# Convert caption and statement into sentence embeddings
caption_embedding = embed([caption])[0].numpy()
statement_embedding = embed([statement])[0].numpy()
# Calculate cosine similarity between sentence embeddings
similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0]
return similarity_score
# Read statements from the external file 'statements.txt'
with open('statements.txt', 'r') as file:
statements = file.read().splitlines()
# Function to compute ITM scores for the image-statement pair
def compute_itm_score(image, statement):
logging.info('Starting compute_itm_score')
pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
# Pass the statement text directly to model_itm
itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm")
itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
score = itm_scores[:, 1].item()
logging.info('Finished compute_itm_score')
return score
def generate_caption(processor, model, image):
logging.info('Starting generate_caption')
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
logging.info('Finished generate_caption')
return generated_caption
def save_dataframe_to_csv(df):
csv_buffer = io.StringIO()
df.to_csv(csv_buffer, index=False)
csv_string = csv_buffer.getvalue()
# Save the CSV string to a temporary file
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file:
temp_file.write(csv_string)
temp_file_path = temp_file.name # Get the file path
# Return the file path (no need to reopen the file with "rb" mode)
return temp_file_path
# Define a function to check if the uploaded file is an image
def is_image_file(file):
allowed_extensions = [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"]
file_extension = os.path.splitext(file.name)[1]
return file_extension.lower() in allowed_extensions
# Main function to perform image captioning and image-text matching
# Main function to perform image captioning and image-text matching
def process_images_and_statements(file):
logging.debug("Entered process_images_and_statements function")
logging.debug(f"File object: {file}")
logging.debug(f"File name: {file.name}")
logging.debug(f"File size: {file.tell()}")
# Check if the uploaded file is an image
if not is_image_file(file):
return "Invalid file type. Please upload an image file (e.g., .jpg, .png, .jpeg)."
# Extract the filename from the file object
filename = file.name
# Load the image data from the file (convert file object to bytes using file.read())
try:
logging.debug("Attempting to open image")
image = Image.open(io.BytesIO(file.read()))
logging.debug("Image opened successfully")
except Exception as e:
logging.exception("Error occurred while opening image")
return str(e) # Return error message to the user
# Generate image caption for the uploaded image using git-large-r-textcaps
caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
# Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
weight_textual_similarity = 0.5
weight_statement = 0.5
# Initialize an empty list to store the results
results_list = []
# Loop through each predefined statement
for statement in statements:
# Compute textual similarity between caption and statement
textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
# Compute ITM score for the image-statement pair
itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
# Combine the two scores using a weighted average
final_score = ((weight_textual_similarity * textual_similarity_score) +
(weight_statement * itm_score_statement))
# Append the result to the results_list, including the image filename
results_list.append({
'Image Filename': filename, # Add the image filename to the output
'Statement': statement,
'Generated Caption': caption,
'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
})
# Convert the results_list to a DataFrame using pandas.concat
results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True)
logging.info('Finished process_images_and_statements')
# Save results_df to a CSV file
csv_results = save_dataframe_to_csv(results_df)
# Return both the DataFrame and the CSV data for the Gradio interface
return results_df, csv_results # <--- Return results_df and csv_results
# Gradio interface
file_input = gr.inputs.File(label="Upload Image") # Use File input for image upload
output_df = gr.outputs.Dataframe(type="pandas", label="Results")
output_csv = gr.outputs.File(label="Download CSV")
iface = gr.Interface(
fn=process_images_and_statements,
inputs=file_input,
outputs=[output_df, output_csv],
title="Image Captioning and Image-Text Matching",
theme='sudeepshouche/minimalist',
css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
)
# Launch the Gradio interface
iface.launch(debug=True) |