dh-mc commited on
Commit
dab24b4
·
1 Parent(s): 1c6f4f0

r3: hfl/llama-3-chinese-8b-instruct-v3

Browse files
competition/00d_Llama3_Results.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
competition/11b_Llama-3_8b_p1_en_analysis.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
competition/11b_Llama-3_8b_p2_en_analysis.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
llama-factory/config/llama3-8b_lora_sft_bf16-p1_r3.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### model
2
+ model_name_or_path: hfl/llama-3-chinese-8b-instruct-v3
3
+
4
+ ### method
5
+ stage: sft
6
+ do_train: true
7
+ finetuning_type: lora
8
+ lora_target: all
9
+ # quantization_bit: 4 # use 4-bit QLoRA
10
+ loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
11
+ # use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
12
+ upcast_layernorm: true
13
+
14
+ ### dataset
15
+ dataset: alpaca_mgtv_p1
16
+ template: llama3
17
+ cutoff_len: 4096
18
+ max_samples: 25000
19
+ overwrite_cache: true
20
+ preprocessing_num_workers: 16
21
+
22
+ ### output
23
+ output_dir: saves/llama3-8b/lora/sft_bf16_p1_full_r3
24
+ logging_steps: 10
25
+ save_steps: 35
26
+ plot_loss: true
27
+ # overwrite_output_dir: true
28
+
29
+ ### train
30
+ per_device_train_batch_size: 16
31
+ gradient_accumulation_steps: 8
32
+ learning_rate: 1.0e-4
33
+ num_train_epochs: 1.0
34
+ lr_scheduler_type: cosine
35
+ warmup_ratio: 0.1
36
+ bf16: true
37
+ ddp_timeout: 180000000
38
+
39
+ ### eval
40
+ val_size: 0.1
41
+ per_device_eval_batch_size: 1
42
+ eval_strategy: steps
43
+ eval_steps: 35
44
+
45
+ report_to: wandb
46
+ run_name: llama3_8b_p1_full_r3 # optional
llama-factory/config/llama3-8b_lora_sft_bf16-p2_r3.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### model
2
+ model_name_or_path: hfl/llama-3-chinese-8b-instruct-v3
3
+
4
+ ### method
5
+ stage: sft
6
+ do_train: true
7
+ finetuning_type: lora
8
+ lora_target: all
9
+ # quantization_bit: 4 # use 4-bit QLoRA
10
+ loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
11
+ # use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
12
+ upcast_layernorm: true
13
+
14
+ ### dataset
15
+ dataset: alpaca_mgtv_p2
16
+ template: llama3
17
+ cutoff_len: 4096
18
+ max_samples: 25000
19
+ overwrite_cache: true
20
+ preprocessing_num_workers: 16
21
+
22
+ ### output
23
+ output_dir: saves/llama3-8b/lora/sft_bf16_p2_full_r3
24
+ logging_steps: 10
25
+ save_steps: 35
26
+ plot_loss: true
27
+ # overwrite_output_dir: true
28
+
29
+ ### train
30
+ per_device_train_batch_size: 16
31
+ gradient_accumulation_steps: 8
32
+ learning_rate: 1.0e-4
33
+ num_train_epochs: 1.0
34
+ lr_scheduler_type: cosine
35
+ warmup_ratio: 0.1
36
+ bf16: true
37
+ ddp_timeout: 180000000
38
+
39
+ ### eval
40
+ val_size: 0.1
41
+ per_device_eval_batch_size: 1
42
+ eval_strategy: steps
43
+ eval_steps: 35
44
+
45
+ report_to: wandb
46
+ run_name: llama3_8b_p2_full_r3 # optional
results/mgtv-llama3_p1_en_full_metrics.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ epoch,model,accuracy,precision,recall,f1
2
+ 0.3333333333333333,meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf,0.6486666666666666,0.6525934632970077,0.6486666666666666,0.6312721163517108
3
+ 0.6666666666666666,meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-234_torch.bfloat16_lf,0.561,0.6897096276142071,0.561,0.6083393704375663
4
+ 1.0,meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-351_torch.bfloat16_lf,0.621,0.686842945161901,0.621,0.6417441253605001
results/mgtv-llama3_p2_en_full_metrics.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ epoch,model,accuracy,precision,recall,f1
2
+ 0.3333333333333333,meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf,0.6203333333333333,0.663582082981778,0.6203333333333333,0.6363626392286635
3
+ 0.6666666666666666,meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-234_torch.bfloat16_lf,0.5613333333333334,0.7000506187405509,0.5613333333333334,0.6113039056178092
4
+ 1.0,meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-351_torch.bfloat16_lf,0.6203333333333333,0.6819200833733873,0.6203333333333333,0.6405153767205392
scripts/eval-mgtv-llama3_8b.sh CHANGED
@@ -21,17 +21,19 @@ export RESIZE_TOKEN_EMBEDDINGS=true
21
  export START_EPOCH=0
22
  export USING_LLAMA_FACTORY=true
23
 
24
- export MODEL_NAME=shenzhi-wang/Llama3-8B-Chinese-Chat
 
 
25
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
26
 
27
- export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p1_r2.csv
28
- export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p1_full_r2
29
  export USING_P1_PROMPT_TEMPLATE=true
30
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
31
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
32
 
33
- export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p2_r2.csv
34
- export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p2_full_r2
35
  export USING_P1_PROMPT_TEMPLATE=false
36
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
37
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
 
21
  export START_EPOCH=0
22
  export USING_LLAMA_FACTORY=true
23
 
24
+ # export MODEL_NAME=shenzhi-wang/Llama3-8B-Chinese-Chat
25
+ export MODEL_NAME=hfl/llama-3-chinese-8b-instruct-v3
26
+
27
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
28
 
29
+ export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p1_r3.csv
30
+ export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p1_full_r3
31
  export USING_P1_PROMPT_TEMPLATE=true
32
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
33
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
34
 
35
+ export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p2_r3.csv
36
+ export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p2_full_r3
37
  export USING_P1_PROMPT_TEMPLATE=false
38
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
39
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
scripts/tune-mgtv-llama3_8b.sh CHANGED
@@ -25,12 +25,12 @@ export MODEL_NAME=shenzhi-wang/Llama3-8B-Chinese-Chat
25
 
26
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
27
 
28
- export CONFIG_FILE=config/$MODEL_PREFIX-p1_r2.yaml
29
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
30
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
31
 
32
 
33
- export CONFIG_FILE=config/$MODEL_PREFIX-p2_r2.yaml
34
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
35
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
36
 
 
25
 
26
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
27
 
28
+ export CONFIG_FILE=config/$MODEL_PREFIX-p1_r3.yaml
29
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
30
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
31
 
32
 
33
+ export CONFIG_FILE=config/$MODEL_PREFIX-p2_r3.yaml
34
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
35
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
36