si649project2 / app.py
jchoo's picture
Update app.py
3ea7a36 verified
raw
history blame
28.5 kB
import os
import re
import csv
import json
import math
import openai
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import tqdm
from scipy import stats
from datetime import datetime
from collections import defaultdict, Counter
from matplotlib.ticker import FuncFormatter
from matplotlib.colors import ListedColormap
import panel as pn
import altair as alt
def choices_to_df(choices, hue):
df = pd.DataFrame(choices, columns=['choices'])
df['hue'] = hue
df['hue'] = df['hue'].astype(str)
return df
binrange = (0, 100)
moves = []
with open('dictator.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
col2idx = {col: idx for idx, col in enumerate(header)}
for row in reader:
record = {col: row[idx] for col, idx in col2idx.items()}
if record['Role'] != 'first': continue
if int(record['Round']) > 1: continue
if int(record['Total']) != 100: continue
if record['move'] == 'None': continue
if record['gameType'] != 'dictator': continue
move = float(record['move'])
if move < binrange[0] or \
move > binrange[1]: continue
moves.append(move)
df_dictator_human = choices_to_df(moves, 'Human')
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
df_dictator_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [25, 35, 70, 30, 20, 25, 40, 80, 30, 30, 40, 30, 30, 30, 30, 30, 40, 40, 30, 30, 40, 30, 60, 20, 40, 25, 30, 30, 30]
df_dictator_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
def extract_choices(recrods):
choices = [extract_amout(
messages[-1]['content'],
prefix='$',
print_except=True,
type=float) for messages in records['messages']
]
choices = [x for x in choices if x is not None]
# print(choices)
return choices
def extract_amout(
message,
prefix='',
print_except=True,
type=float,
brackets='[]'
):
try:
matches = extract_brackets(message, brackets=brackets)
matches = [s[len(prefix):] \
if s.startswith(prefix) \
else s for s in matches]
invalid = False
if len(matches) == 0:
invalid = True
for i in range(len(matches)):
if matches[i] != matches[0]:
invalid = True
if invalid:
raise ValueError('Invalid answer: %s' % message)
return type(matches[0])
except Exception as e:
if print_except: print(e)
return None
records = json.load(open('dictator_wo_ex_2023_03_13-11_24_07_PM.json', 'r'))
choices = extract_choices(records)
# Plot 1 - Dictator (altruism)
def plot_facet(
df_list,
x='choices',
hue='hue',
palette=None,
binrange=None,
bins=10,
# binwidth=10,
stat='count',
x_label='',
sharex=True,
sharey=False,
subplot=sns.histplot,
xticks_locs=None,
# kde=False,
**kwargs
):
data = pd.concat(df_list)
if binrange is None:
binrange = (data[x].min(), data[x].max())
g = sns.FacetGrid(
data, row=hue, hue=hue,
palette=palette,
aspect=2, height=2,
sharex=sharex, sharey=sharey,
despine=True,
)
g.map_dataframe(
subplot,
x=x,
# kde=kde,
binrange=binrange,
bins=bins,
stat=stat,
**kwargs
)
# g.add_legend(title='hue')
g.set_axis_labels(x_label, stat.title())
g.set_titles(row_template="{row_name}")
for ax in g.axes.flat:
ax.yaxis.set_major_formatter(
FuncFormatter(lambda y, pos: '{:.2f}'.format(y))
)
binwidth = (binrange[1] - binrange[0]) / bins
if xticks_locs is None:
locs = np.linspace(binrange[0], binrange[1], bins//2+1)
locs = [loc + binwidth for loc in locs]
else:
locs = xticks_locs
labels = [str(int(loc)) for loc in locs]
locs = [loc + 0.5*binwidth for loc in locs]
plt.xticks(locs, labels)
g.set(xlim=binrange)
return g
df = df_dictator_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_dictator_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_dictator_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 2 - - Ultimatum (Fairness)
df = pd.read_csv('ultimatum_strategy.csv')
df = df[df['gameType'] == 'ultimatum_strategy']
df = df[df['Role'] == 'player']
df = df[df['Round'] == 1]
df = df[df['Total'] == 100]
df = df[df['move'] != 'None']
df['propose'] = df['move'].apply(lambda x: eval(x)[0])
df['accept'] = df['move'].apply(lambda x: eval(x)[1])
df = df[(df['propose'] >= 0) & (df['propose'] <= 100)]
df = df[(df['accept'] >= 0) & (df['accept'] <= 100)]
df_ultimatum_1_human = choices_to_df(list(df['propose']), 'Human')
df_ultimatum_2_human = choices_to_df(list(df['accept']), 'Human')
choices = [50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0]
df_ultimatum_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [40, 40, 40, 30, 70, 70, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 30, 30, 35, 50, 40, 70, 40, 60, 60, 70, 40, 50]
df_ultimatum_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 25.0, 50.0, 1.0, 1.0, 20.0, 50.0, 50.0, 50.0, 20.0, 50.0, 1.0, 1.0, 1.0, 50.0, 50.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0] + [0, 1]
df_ultimatum_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [None, 50, 50, 50, 50, 30, None, None, 30, 33.33, 40, None, 50, 40, None, 1, 30, None, 10, 50, 30, 10, 30, None, 30, None, 10, 30, 30, 30]
df_ultimatum_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [50.0, 50.0, 10.0, 40.0, 20.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 50.0, 20.0, 10.0, 50.0, 20.0, 1.0, 1.0, 50.0, 1.0, 20.0, 1.0, 50.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 50.0]
df_ultimatum_2_gpt4_female = choices_to_df(choices, hue='ChatGPT-4 Female')
choices = [1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 50.0, 50.0, 20.0, 20.0, 1.0, 50.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 50.0, 20.0, 20.0, 10.0, 50.0, 1.0, 1.0, 1.0]
df_ultimatum_2_gpt4_male = choices_to_df(choices, hue='ChatGPT-4 Male')
choices = [40.0, 1.0, 1.0, 20.0, 1.0, 20.0, 50.0, 50.0, 1.0, 1.0, 1.0, 50.0, 1.0, 20.0, 50.0, 10.0, 50.0, 1.0, 1.0, 20.0, 1.0, 50.0, 20.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 40.0]
df_ultimatum_2_gpt4_US = choices_to_df(choices, hue='ChatGPT-4 US')
choices = [1.0, 1.0, 20.0, 50.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0, 20.0, 50.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 50.0, 1.0, 1.0, 1.0, 1.0]
df_ultimatum_2_gpt4_Poland = choices_to_df(choices, hue='ChatGPT-4 Poland')
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 1.0, 20.0, 50.0, 0.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 20.0, 50.0, 20.0]
df_ultimatum_2_gpt4_China = choices_to_df(choices, hue='ChatGPT-4 China')
choices = [1.0, 1.0, 1.0, 50.0, 1.0, 1.0, 50.0, 40.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 1.0, 50.0, 1.0, 50.0, 1.0, 20.0, 1.0, 20.0, 1.0, 50.0, 1.0, 50.0, 20.0, 1.0, 1.0, 50.0]
df_ultimatum_2_gpt4_UK = choices_to_df(choices, hue='ChatGPT-4 UK')
choices = [50.0, 1.0, 20.0, 50.0, 50.0, 50.0, 50.0, 10.0, 1.0, 40.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 50.0, 20.0, 20.0, 1.0, 1.0, 50.0, 20.0, 50.0, 50.0, 20.0, 1.0, 20.0, 50.0, 1]
df_ultimatum_2_gpt4_Columbia = choices_to_df(choices, hue='ChatGPT-4 Columbia')
choices = [50.0, 1.0, 50.0, 20.0, 20.0, 20.0, 50.0, 20.0, 20.0, 1.0, 1.0, 1.0, 1.0, 20.0, 1.0, 50.0, 1.0, 20.0, 20.0, 50.0, 1.0, 50.0, 1.0, 40.0, 1.0, 20.0, 1.0, 20.0, 1.0, 1.0]
df_ultimatum_2_gpt4_under = choices_to_df(choices, hue='ChatGPT-4 Undergrad')
choices = [1.0, 20.0, 1.0, 40.0, 50.0, 1.0, 1.0, 1.0, 25.0, 20.0, 50.0, 20.0, 50.0, 50.0, 1.0, 50.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 50.0, 20.0, 1.0, 1.0, 1.0, 50.0, 20.0, 20.0]
df_ultimatum_2_gpt4_grad = choices_to_df(choices, hue='ChatGPT-4 Graduate')
df = df_ultimatum_1_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_1_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_1_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10)),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final2 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 3 - - Ultimatum (Responder) (spite)
df = df_ultimatum_2_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_2_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_ultimatum_2_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final3 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 4 - - Trust (as Investor) (trust)
binrange = (0, 100)
moves_1 = []
moves_2 = defaultdict(list)
with open('trust_investment.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
col2idx = {col: idx for idx, col in enumerate(header)}
for row in reader:
record = {col: row[idx] for col, idx in col2idx.items()}
# if record['Role'] != 'first': continue
if int(record['Round']) > 1: continue
# if int(record['Total']) != 100: continue
if record['move'] == 'None': continue
if record['gameType'] != 'trust_investment': continue
if record['Role'] == 'first':
move = float(record['move'])
if move < binrange[0] or \
move > binrange[1]: continue
moves_1.append(move)
elif record['Role'] == 'second':
inv, ret = eval(record['roundResult'])
if ret < 0 or \
ret > inv * 3: continue
moves_2[inv].append(ret)
else: continue
df_trust_1_human = choices_to_df(moves_1, 'Human')
df_trust_2_human = choices_to_df(moves_2[10], 'Human')
df_trust_3_human = choices_to_df(moves_2[50], 'Human')
df_trust_4_human = choices_to_df(moves_2[100], 'Human')
choices = [50.0, 50.0, 40.0, 30.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0, 50.0, 30.0, 30.0, 50.0, 50.0, 50.0, 40.0, 40.0, 50.0, 50.0, 50.0, 50.0, 40.0, 50.0, 50.0, 50.0, 50.0]
df_trust_1_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [50.0, 50.0, 30.0, 30.0, 30.0, 60.0, 50.0, 40.0, 20.0, 20.0, 50.0, 40.0, 30.0, 20.0, 30.0, 20.0, 30.0, 60.0, 50.0, 30.0, 50.0, 20.0, 20.0, 30.0, 50.0, 30.0, 30.0, 50.0, 40.0] + [30]
df_trust_1_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 15.0, 20.0, 15.0, 15.0, 15.0, 15.0, 15.0, 20.0, 20.0, 15.0]
df_trust_2_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 15.0, 25.0, 30.0, 30.0, 20.0, 25.0, 30.0, 20.0, 20.0, 18.0] + [20, 20, 20, 25, 25, 25, 30]
df_trust_2_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [100.0, 75.0, 75.0, 75.0, 75.0, 75.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0, 75.0, 75.0, 100.0, 100.0, 100.0, 75.0, 100.0, 100.0, 100.0, 100.0, 75.0, 100.0, 75.0]
df_trust_3_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [150.0, 100.0, 150.0, 150.0, 50.0, 150.0, 100.0, 150.0, 100.0, 100.0, 100.0, 150.0] + [100, 100, 100, 100, 100, 100, 100, 100]
df_trust_3_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
choices = [200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 200.0, 200.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0]
df_trust_4_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
choices = [225.0, 225.0, 300.0, 300.0, 220.0, 300.0, 250.0] + [200, 200, 250, 200, 200]
df_trust_4_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
df = df_trust_1_human
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_1_gpt4
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_1_turbo
bin_ranges = [0, 10, 30, 50, 70]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(extent=[0, 70], step=10), axis=None),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
final4 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 5 - Trust (as Banker) (fairness, altruism, reciprocity)
df = df_trust_3_human
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
custom_ticks = [2, 6, 10, 14, 18]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
y='density:Q',
color=alt.value('steelblue')
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_3_gpt4
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=10), axis=None),
y='density:Q',
color=alt.value('orange')
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_trust_3_turbo
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=10)),
y='density:Q',
color=alt.value('green')
).properties(
width=500,
title='Density of Choices'
).interactive()
# chart1
final5 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Plot 6 - Public Goods (Free-Riding, altruism, cooperation)
df = pd.read_csv('public_goods_linear_water.csv')
df = df[df['Role'] == 'contributor']
df = df[df['Round'] <= 3]
df = df[df['Total'] == 20]
df = df[df['groupSize'] == 4]
df = df[df['move'] != None]
df = df[(df['move'] >= 0) & (df['move'] <= 20)]
df = df[df['gameType'] == 'public_goods_linear_water']
round_1 = df[df['Round'] == 1]['move']
round_2 = df[df['Round'] == 2]['move']
round_3 = df[df['Round'] == 3]['move']
print(len(round_1), len(round_2), len(round_3))
df_PG_human = pd.DataFrame({
'choices': list(round_1)
})
df_PG_human['hue'] = 'Human'
# df_PG_human
file_names = [
'PG_basic_turbo_2023_05_09-02_49_09_AM.json',
'PG_basic_turbo_loss_2023_05_09-03_59_49_AM.json',
'PG_basic_gpt4_2023_05_09-11_15_42_PM.json',
'PG_basic_gpt4_loss_2023_05_09-10_44_38_PM.json',
]
choices = []
for file_name in file_names:
with open(file_name, 'r') as f:
choices += json.load(f)['choices']
choices_baseline = choices
choices = [tuple(x)[0] for x in choices]
df_PG_turbo = choices_to_df(choices, hue=str('ChatGPT-3'))
# df_PG_turbo.head()
df_PG_gpt4 = choices_to_df(choices, hue=str('ChatGPT-4'))
# df_PG_gpt4.head()
df = df_PG_human
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
custom_ticks = [2, 6, 10, 14, 18]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart1 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
y='density:Q',
color=alt.value('steelblue'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_PG_gpt4
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart2 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=2), axis=None),
y='density:Q',
color=alt.value('orange'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
df = df_PG_turbo
bin_ranges = [0, 25, 50, 75, 100, 125, 150]
# Calculate density as a percentage
density_percentage = df['choices'].value_counts(normalize=True)
# Create a DataFrame with the density percentages
density_df = pd.DataFrame({'choices': density_percentage.index, 'density': density_percentage.values})
# Create the bar chart using Altair
chart3 = alt.Chart(density_df).mark_bar().encode(
x=alt.X('choices:O', bin=alt.Bin(step=2)),
y='density:Q',
color=alt.value('green'),
tooltip=['density']
).properties(
width=500,
title='Density of Choices'
).interactive()
# chart1
final6 = alt.vconcat(chart1, chart2, chart3).resolve_scale(x='shared')
#Final_Final
final_final = (final | final2 | final3 ) & (final4 | final5 | final6)
#Dashboard
import panel as pn
import vega_datasets
# Enable Panel extensions
pn.extension(design='bootstrap')
pn.extension('vega')
template = pn.template.BootstrapTemplate(
title='SI649 Project2',
)
# the main column will hold our key content
maincol = pn.Column()
options1 = ['ALL', 'Choose Your Own', 'Based On Category']
select0 = pn.widgets.Select(options=options1, name='Choose what to compare')
# maincol.append(select0)
# Charts
charts = []
charts.append(final)
charts.append(final2)
charts.append(final3)
charts.append(final4)
charts.append(final5)
charts.append(final6)
# Define options for dropdown
options = [f'Chart {i+1}' for i in range(len(charts))]
# Panel widgets
select1 = pn.widgets.Select(options=options, name='Select Chart 1')
select2 = pn.widgets.Select(options=options, name='Select Chart 2')
options = ['Altruism', 'Fairness', 'spite', 'trust', 'reciprocity', 'free-riding', 'cooperation']
select_widget = pn.widgets.Select(options=options, name='Select a category')
# Define function to update chart
def update_chart(value):
if value:
index = int(value.split()[-1]) - 1
return charts[index]
else:
return None
# Combine dropdown and chart
@pn.depends(select1.param.value, select2.param.value)
def update_plots(value1, value2):
selected_chart1 = update_chart(value1)
selected_chart2 = update_chart(value2)
if selected_chart1 and selected_chart2:
return pn.Row(selected_chart1, selected_chart2)
elif selected_chart1:
return selected_chart1
elif selected_chart2:
return selected_chart2
else:
return None
# Define functions for each category
def update_plots_altruism():
return pn.Row(final, final5)
def update_plots_fairness():
return pn.Row(final2, final5)
def update_plots_spite():
return final
def update_plots_trust():
return final4
def update_plots_reciprocity():
return final5
def update_plots_freeriding():
return final6
def update_plots_cooperation():
return final6
# Define a dictionary to map categories to update functions
update_functions = {
'Altruism': update_plots_altruism,
'Fairness': update_plots_fairness,
'spite': update_plots_spite,
'trust': update_plots_trust,
'reciprocity': update_plots_reciprocity,
'freeriding': update_plots_freeriding,
'cooperation': update_plots_cooperation
}
# # Define function to update chart based on selected category
# def update_plots_category(event):
# selected_category = event.new
# maincol.clear() # Clear existing content in main column
# if selected_category in update_functions:
# update_function = update_functions[selected_category]
# maincol.append(update_function())
# else:
# maincol.append(pn.pane.Markdown(f"No update function found for category: {selected_category}"))
# Define function to update chart based on selected category
def update_plots_category(event):
selected_category = event.new
maincol.clear() # Clear existing content in main column
if selected_category in update_functions:
update_function = update_functions[selected_category]
maincol.append(update_function())
else:
maincol.append(pn.pane.Markdown(f"No update function found for category: {selected_category}"))
# Append select_widget again to allow changing the category selection
maincol.append(select_widget)
# Callback function to handle select widget events
def select_callback(event):
selected_value = event.new
maincol.clear() # Clear existing content in main column
if selected_value == 'Choose Your Own':
maincol.append(select1)
maincol.append(select2)
maincol.append(update_plots)
elif selected_value == 'Based On Category':
maincol.append(select_widget)
select_widget.param.watch(update_plots_category, 'value')
# # Bind the update_plots_category function to the select widget's 'value' parameter
# select.param.watch
# maincol.append(update_plots_category())
# Bind the callback function to the select widget's 'value' parameter
select0.param.watch(select_callback, 'value')
maincol.append(select0)
template.main.append(maincol)
template.servable()