Spaces:
Running
on
Zero
Running
on
Zero
# GLIGEN: Open-Set Grounded Text-to-Image Generation | |
These scripts contain the code to prepare the grounding data and train the GLIGEN model on COCO dataset. | |
### Install the requirements | |
```bash | |
conda create -n diffusers python==3.10 | |
conda activate diffusers | |
pip install -r requirements.txt | |
``` | |
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: | |
```bash | |
accelerate config | |
``` | |
Or for a default accelerate configuration without answering questions about your environment | |
```bash | |
accelerate config default | |
``` | |
Or if your environment doesn't support an interactive shell e.g. a notebook | |
```python | |
from accelerate.utils import write_basic_config | |
write_basic_config() | |
``` | |
### Prepare the training data | |
If you want to make your own grounding data, you need to install the requirements. | |
I used [RAM](https://github.com/xinyu1205/recognize-anything) to tag | |
images, [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO/issues?q=refer) to detect objects, | |
and [BLIP2](https://huggingface.co/docs/transformers/en/model_doc/blip-2) to caption instances. | |
Only RAM needs to be installed manually: | |
```bash | |
pip install git+https://github.com/xinyu1205/recognize-anything.git --no-deps | |
``` | |
Download the pre-trained model: | |
```bash | |
huggingface-cli download --resume-download xinyu1205/recognize_anything_model ram_swin_large_14m.pth | |
huggingface-cli download --resume-download IDEA-Research/grounding-dino-base | |
huggingface-cli download --resume-download Salesforce/blip2-flan-t5-xxl | |
huggingface-cli download --resume-download clip-vit-large-patch14 | |
huggingface-cli download --resume-download masterful/gligen-1-4-generation-text-box | |
``` | |
Make the training data on 8 GPUs: | |
```bash | |
torchrun --master_port 17673 --nproc_per_node=8 make_datasets.py \ | |
--data_root /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \ | |
--save_root /root/gligen_data \ | |
--ram_checkpoint /root/.cache/huggingface/hub/models--xinyu1205--recognize_anything_model/snapshots/ebc52dc741e86466202a5ab8ab22eae6e7d48bf1/ram_swin_large_14m.pth | |
``` | |
You can download the COCO training data from | |
```bash | |
huggingface-cli download --resume-download Hzzone/GLIGEN_COCO coco_train2017.pth | |
``` | |
It's in the format of | |
```json | |
[ | |
... | |
{ | |
'file_path': Path, | |
'annos': [ | |
{ | |
'caption': Instance | |
Caption, | |
'bbox': bbox | |
in | |
xyxy, | |
'text_embeddings_before_projection': CLIP | |
text | |
embedding | |
before | |
linear | |
projection | |
} | |
] | |
} | |
... | |
] | |
``` | |
### Training commands | |
The training script is heavily based | |
on https://github.com/huggingface/diffusers/blob/main/examples/controlnet/train_controlnet.py | |
```bash | |
accelerate launch train_gligen_text.py \ | |
--data_path /root/data/zhizhonghuang/coco_train2017.pth \ | |
--image_path /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \ | |
--train_batch_size 8 \ | |
--max_train_steps 100000 \ | |
--checkpointing_steps 1000 \ | |
--checkpoints_total_limit 10 \ | |
--learning_rate 5e-5 \ | |
--dataloader_num_workers 16 \ | |
--mixed_precision fp16 \ | |
--report_to wandb \ | |
--tracker_project_name gligen \ | |
--output_dir /root/data/zhizhonghuang/ckpt/GLIGEN_Text_Retrain_COCO | |
``` | |
I trained the model on 8 A100 GPUs for about 11 hours (at least 24GB GPU memory). The generated images will follow the | |
layout possibly at 50k iterations. | |
Note that although the pre-trained GLIGEN model has been loaded, the parameters of `fuser` and `position_net` have been reset (see line 420 in `train_gligen_text.py`) | |
The trained model can be downloaded from | |
```bash | |
huggingface-cli download --resume-download Hzzone/GLIGEN_COCO config.json diffusion_pytorch_model.safetensors | |
``` | |
You can run `demo.ipynb` to visualize the generated images. | |
Example prompts: | |
```python | |
prompt = 'A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky' | |
boxes = [[0.041015625, 0.548828125, 0.453125, 0.859375], | |
[0.525390625, 0.552734375, 0.93359375, 0.865234375], | |
[0.12890625, 0.015625, 0.412109375, 0.279296875], | |
[0.578125, 0.08203125, 0.857421875, 0.27734375]] | |
gligen_phrases = ['a green car', 'a blue truck', 'a red air balloon', 'a bird'] | |
``` | |
Example images: | |
![alt text](generated-images-100000-00.png) | |
### Citation | |
``` | |
@article{li2023gligen, | |
title={GLIGEN: Open-Set Grounded Text-to-Image Generation}, | |
author={Li, Yuheng and Liu, Haotian and Wu, Qingyang and Mu, Fangzhou and Yang, Jianwei and Gao, Jianfeng and Li, Chunyuan and Lee, Yong Jae}, | |
journal={CVPR}, | |
year={2023} | |
} | |
``` |