File size: 12,606 Bytes
c19bd70
 
 
 
 
 
 
 
 
d15eeb1
5e28f37
c19bd70
29522fd
2928f1f
1217943
5e28f37
c8aba3d
5e28f37
 
 
b047baf
2928f1f
cb757a5
c19bd70
 
 
 
 
 
 
 
 
 
 
 
d15eeb1
 
 
 
 
c19bd70
 
 
 
 
 
2928f1f
c19bd70
 
 
 
 
2928f1f
4e5249a
c19bd70
b047baf
c19bd70
 
 
 
 
2a84d59
c19bd70
2a84d59
c19bd70
 
 
 
d15eeb1
2928f1f
c19bd70
 
1217943
c19bd70
b047baf
c19bd70
 
 
 
 
 
 
 
 
 
b047baf
 
 
535d9e4
b047baf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15eeb1
 
b047baf
 
 
 
 
 
 
 
d15eeb1
b047baf
 
 
 
 
 
 
 
 
c19bd70
 
535d9e4
c19bd70
2928f1f
c19bd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485328
c19bd70
 
b047baf
c19bd70
 
 
 
 
 
 
b047baf
b3140ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f90ede
b3140ad
 
 
 
 
 
 
4f90ede
b3140ad
 
 
 
 
 
4f90ede
b3140ad
 
 
 
 
 
 
 
4f90ede
b3140ad
 
 
 
 
 
 
 
 
 
 
 
 
 
4f90ede
b3140ad
 
 
 
 
 
 
 
 
 
 
c19bd70
 
b3140ad
 
 
 
 
c19bd70
b3140ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535d9e4
b3140ad
c19bd70
b3140ad
 
b7db3a7
 
59fb22c
 
 
 
 
 
 
492ac4d
b7db3a7
53a3693
b7db3a7
14f7809
34895ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ff5667
34895ce
 
 
 
 
 
 
 
 
 
 
 
 
9ff5667
34895ce
 
 
 
 
 
 
 
 
b7db3a7
b3140ad
9ff5667
 
 
 
 
 
 
b3140ad
 
34895ce
9ff5667
fecff08
b3140ad
 
 
34895ce
b3140ad
9ff5667
 
 
 
 
 
b3140ad
9ff5667
b3140ad
535d9e4
b3140ad
c19bd70
 
b047baf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline
from huggingface_hub import snapshot_download

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

model_path = snapshot_download(
    repo_id="stabilityai/stable-diffusion-3-medium", 
    revision="refs/pr/26",
    repo_type="model", 
    ignore_patterns=["*.md", "*..gitattributes"],
    local_dir="stable-diffusion-3-medium",
    token=huggingface_token, # type a new token-id.
    )

DESCRIPTION = """# Stable Diffusion 3"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def load_pipeline(pipeline_type):
    if pipeline_type == "text2img":
        return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
    elif pipeline_type == "img2img":
        return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=torch.float16)

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def generate(
    prompt:str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    num_inference_steps=30,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe = load_pipeline("text2img")
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None # type: ignore
    
    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="battery",
    ).images

    return output


@spaces.GPU
def img2img_generate(
    prompt:str,
    init_image: gr.Image,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    num_inference_steps=30,
    strength: float = 0.8,
    NUM_IMAGES_PER_PROMPT=1,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe = load_pipeline("img2img")
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None # type: ignore
    
    init_image = init_image.resize((768, 768))
    
    output = pipe(
        prompt=prompt,
        image=init_image,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        strength=strength,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        output_type="battery",
    ).images

    return output


examples = [
    "neon holography crystal cat",
    "a cat eating a piece of cheese",
    "an astronaut riding a horse in space",
    "a cartoon of a boy playing with a tiger",
    "a cute robot artist painting on an easel, concept art",
    "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
]

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            gr.HTML(
            """
            <h1 style='text-align: center'>
            Stable Diffusion 3 
            </h1>
            """
            )
            gr.HTML(
                """
                <h3 style='text-align: center'>
                Follow me for more! 
                <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
                </h3>
                """
            )
    
    with gr.Tabs():
        with gr.TabItem("Text to Image"):
            with gr.Group():
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)
                result = gr.Gallery(label="Result", elem_id="gallery", show_label=False)
            with gr.Accordion("Advanced options", open=False):
                with gr.Row():
                    use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                    negative_prompt = gr.Text(
                        label="Negative prompt",
                        max_lines=1,
                        value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                        visible=True,
                    )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                steps = gr.Slider(
                    label="Steps",
                    minimum=0,
                    maximum=60,
                    step=1,
                    value=25,
                )
                number_image = gr.Slider(
                    label="Number of Images",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=1,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row(visible=True):
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.1,
                        maximum=10,
                        step=0.1,
                        value=7.0,
                    )
            
            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=[result],
                fn=generate,
                cache_examples=CACHE_EXAMPLES,
            )

            use_negative_prompt.change(
                fn=lambda x: gr.update(visible=x),
                inputs=use_negative_prompt,
                outputs=negative_prompt,
                api_name=False,
            )

            gr.on(
                triggers=[
                    prompt.submit,
                    negative_prompt.submit,
                    run_button.click,
                ],
                fn=generate,
                inputs=[
                    prompt,
                    negative_prompt,
                    use_negative_prompt,
                    seed,
                    width,
                    height,
                    guidance_scale,
                    randomize_seed,
                    steps,
                    number_image,
                ],
                outputs=[result],
                api_name="run",
            )
        with gr.TabItem("Image to Image"):
            with gr.Group():
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        img2img_prompt = gr.Text(
                            label="Prompt",
                            show_label=False,
                            max_lines=1,
                            placeholder="Enter your prompt",
                            container=False,
                        )
                        init_image = gr.Image(label="Input Image", type="pil")
                        with gr.Row():
                            img2img_run_button = gr.Button("Generate", variant="primary")
                    with gr.Column(scale=1):
                        img2img_output = gr.Gallery(label="Result", elem_id="gallery")
                with gr.Accordion("Advanced options", open=False):
                    with gr.Row():
                        img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
                        img2img_negative_prompt = gr.Text(
                            label="Negative prompt",
                            max_lines=1,
                            value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
                            visible=True,
                        )
                    img2img_seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    img2img_steps = gr.Slider(
                        label="Steps",
                        minimum=0,
                        maximum=60,
                        step=1,
                        value=25,
                    )
                    img2img_number_image = gr.Slider(
                        label="Number of Images",
                        minimum=1,
                        maximum=4,
                        step=1,
                        value=1,
                    )
                    img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    with gr.Row():
                        img2img_guidance_scale = gr.Slider(
                            label="Guidance Scale",
                            minimum=0.1,
                            maximum=10,
                            step=0.1,
                            value=7.0,
                        )
                        strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
            
            img2img_use_negative_prompt.change(
                fn=lambda x: gr.update(visible=x),
                inputs=img2img_use_negative_prompt,
                outputs=img2img_negative_prompt,
                api_name=False,
            )
        
            gr.on(
                triggers=[
                    img2img_prompt.submit,
                    img2img_negative_prompt.submit,
                    img2img_run_button.click,
                ],
                fn=img2img_generate,
                inputs=[
                    img2img_prompt,
                    init_image,
                    img2img_negative_prompt,
                    img2img_use_negative_prompt,
                    img2img_seed,
                    img2img_guidance_scale,
                    img2img_randomize_seed,
                    img2img_steps,
                    strength,
                    img2img_number_image,
                ],
                outputs=[img2img_output],
                api_name="img2img_run",
            )
if __name__ == "__main__":
    demo.queue().launch()