kernelmachine's picture
update
2c5347a
raw
history blame
10.5 kB
import argparse
import json
import logging
import os
import pathlib
import random
import shutil
import sys
import time
from ast import literal_eval
from shutil import rmtree
from typing import Any, Dict, List, Union
import numpy as np
import pandas as pd
import ray
from sklearn.feature_extraction.text import (CountVectorizer, HashingVectorizer, TfidfVectorizer)
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from lr.hyperparameters import (SEARCH_SPACE, HyperparameterSearch,
RandomSearch)
from lr.util import jackknife, replace_bool, stratified_sample
# Create a custom logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
def train_lr(train,
dev,
test,
search_space):
master = pd.concat([train, dev], 0)
space = HyperparameterSearch(**search_space)
sample = space.sample()
if sample.pop('stopwords') == 1:
stop_words = 'english'
else:
stop_words = None
weight = sample.pop('weight')
if weight == 'binary':
binary = True
else:
binary = False
ngram_range = sample.pop('ngram_range')
ngram_range = sorted([int(x) for x in ngram_range.split()])
if weight == 'tf-idf':
vect = TfidfVectorizer(stop_words=stop_words,
lowercase=True,
ngram_range=ngram_range,
)
elif weight == 'hash':
vect = HashingVectorizer(stop_words=stop_words,
lowercase=True,
ngram_range=ngram_range,
)
else:
vect = CountVectorizer(binary=binary,
stop_words=stop_words,
lowercase=True,
ngram_range=ngram_range,
)
start = time.time()
vect.fit(tqdm(master.text, desc="fitting data", leave=False))
X_train = vect.transform(tqdm(train.text, desc="transforming training data", leave=False))
X_dev = vect.transform(tqdm(dev.text, desc="transforming dev data", leave=False))
if test is not None:
X_test = vect.transform(tqdm(test.text, desc="transforming test data", leave=False))
sample['C'] = float(sample['C'])
sample['tol'] = float(sample['tol'])
classifier = LogisticRegression(**sample, verbose=True)
classifier.fit(X_train, train.label)
end = time.time()
for k, v in sample.items():
if not v:
v = str(v)
sample[k] = [v]
res = pd.DataFrame(sample)
preds = classifier.predict(X_dev)
if test is not None:
test_preds = classifier.predict(X_test)
res['dev_f1'] = f1_score(dev.label, preds, average='macro')
if test is not None:
res['test_f1'] = f1_score(test.label, test_preds, average='macro')
res['dev_accuracy'] = classifier.score(X_dev, dev.label)
if test is not None:
res['test_accuracy'] = classifier.score(X_test, test.label)
res['training_duration'] = end - start
res['ngram_range'] = str(ngram_range)
res['weight'] = weight
res['stopwords'] = stop_words
return classifier, vect, res
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train_file', type=str)
parser.add_argument('--dev_file', type=str, required=False)
parser.add_argument('--test_file', type=str, required=False)
parser.add_argument('--search_trials', type=int, default=5)
parser.add_argument('--train_subsample', type=int, required=False)
parser.add_argument('--stratified', action='store_true')
parser.add_argument('--jackknife_partitions', type=int, default=5, required=False)
parser.add_argument('--save_jackknife_partitions', action='store_true')
parser.add_argument('--serialization_dir', '-s', type=str)
parser.add_argument('--override', '-o', action='store_true')
parser.add_argument('--evaluate_on_test', '-t', action='store_true')
args = parser.parse_args()
if not os.path.isdir(args.serialization_dir):
os.makedirs(args.serialization_dir)
else:
if args.override:
rmtree(args.serialization_dir)
os.makedirs(args.serialization_dir)
else:
print(f"serialization directory {args.serialization_dir} exists. Aborting! ")
print(f"reading training data at {args.train_file}...")
train = pd.read_json(args.train_file, lines=True)
if args.train_subsample:
if args.stratified:
train = stratified_sample(train, "label", args.train_subsample)
else:
train = train.sample(n=args.train_subsample)
if args.dev_file:
print(f"reading dev data at {args.dev_file}...")
dev = pd.read_json(args.dev_file, lines=True)
else:
print("Dev file not provided, will jackknife training data...")
if args.evaluate_on_test:
if args.test_file:
print(f"reading test data at {args.test_file}...")
test = pd.read_json(args.test_file, lines=True)
else:
print("Test file not provided.")
sys.exit(1)
else:
test = None
num_assignments = args.search_trials
num_partitions = args.jackknife_partitions
df = pd.DataFrame()
current_f1 = 0.0
best_classifier = None
best_vect = None
if args.dev_file:
pbar = tqdm(range(num_assignments), desc="search trials", leave=False)
for i in pbar:
try:
classifier, vect, res = train_lr(train, dev, test, SEARCH_SPACE)
df = pd.concat([df, res], 0, sort=True)
best_f1 = df.dev_f1.max()
if res.dev_f1[0] > current_f1:
current_f1 = res.dev_f1[0]
best_classifier = classifier
best_vect = vect
pbar.set_description(f"mean +- std dev F1: {df.dev_f1.mean()} +- {df.dev_f1.std()}, max F1: {df.dev_f1.max()}")
except KeyboardInterrupt:
break
else:
if args.save_jackknife_partitions:
if not os.path.isdir(os.path.join(args.serialization_dir, "jackknife")):
os.mkdir(os.path.join(args.serialization_dir, "jackknife"))
for ix, (train, dev) in tqdm(enumerate(jackknife(train, num_partitions=num_partitions)),
total=num_partitions,
leave=False,
desc="jackknife partitions"):
for i in tqdm(range(num_assignments), desc="search trials", leave=False):
classifier, vect, res = train_lr(train, dev, test, SEARCH_SPACE)
df = pd.concat([df, res], 0, sort=True)
best_f1 = df.dev_f1.max()
if res.dev_f1[0] > current_f1:
current_f1 = res.dev_f1[0]
best_classifier = classifier
best_vect = vect
df['dataset_reader.sample'] = train.shape[0]
df['model.encoder.architecture.type'] = 'logistic regression'
if args.save_jackknife_partitions:
train.to_json(
os.path.join(args.serialization_dir,
"jackknife",
f"train.{ix}"),
lines=True,
orient="records")
dev.to_json(os.path.join(args.serialization_dir,
"jackknife",
f"dev.{ix}"),
lines=True,
orient='records')
print("DEV STATISTICS")
print("================")
print(f"mean +- std F1: {df.dev_f1.mean()} +- {df.dev_f1.std()}")
print(f"max F1: {df.dev_f1.max()}")
print(f"min F1: {df.dev_f1.min()}")
print(f"mean +- std accuracy: {df.dev_accuracy.mean()} +- {df.dev_accuracy.std()}")
print(f"max accuracy: {df.dev_accuracy.max()}")
print(f"min accuracy: {df.dev_accuracy.min()}")
print("")
print("BEST HYPERPARAMETERS")
print(f"=====================")
best_hp = df.reset_index().iloc[df.reset_index().dev_f1.idxmax()].to_dict()
print(df.reset_index().iloc[df.reset_index().dev_f1.idxmax()])
if test is not None:
print("TEST STATISTICS")
print("================")
print(f"mean +- std F1: {df.test_f1.mean()} +- {df.test_f1.std()}")
print(f"max F1: {df.test_f1.max()}")
print(f"min F1: {df.test_f1.min()}")
print(f"mean +- std accuracy: {df.test_accuracy.mean()} +- {df.test_accuracy.std()}")
print(f"max accuracy: {df.test_accuracy.max()}")
print(f"min accuracy: {df.test_accuracy.min()}")
df.to_json(os.path.join(args.serialization_dir, "results.jsonl"), lines=True, orient='records')
with open(os.path.join(args.serialization_dir, "best_hyperparameters.json"), "w+") as f:
best_hp = df.reset_index().iloc[df.reset_index().dev_f1.idxmax()].to_dict()
for k,v in best_hp.items():
if isinstance(v, np.int64):
best_hp[k] = int(v)
if isinstance(v, str) and "[" in v:
v = literal_eval(v)
best_hp[k] = f"{v[0]} {v[1]}"
best_hp.pop("index")
best_hp.pop("dev_accuracy")
best_hp.pop("dev_f1")
if test is not None:
best_hp.pop("test_accuracy")
best_hp.pop("test_f1")
best_hp.pop("training_duration")
json.dump(best_hp, f)
with open(os.path.join(args.serialization_dir, "vocab.json"), 'w+') as f:
for k,v in best_vect.__dict__['vocabulary_'].items():
best_vect.__dict__['vocabulary_'][k] = int(v)
json.dump(best_vect.__dict__['vocabulary_'], f)
os.mkdir(os.path.join(args.serialization_dir, "archive"))
try:
np.save(os.path.join(args.serialization_dir, "archive", "idf.npy"), best_vect.idf_)
except:
pass
np.save(os.path.join(args.serialization_dir, "archive", "classes.npy"),best_classifier.classes_)
np.save(os.path.join(args.serialization_dir, "archive", "coef.npy"),best_classifier.coef_)
np.save(os.path.join(args.serialization_dir, "archive", "intercept.npy"), best_classifier.intercept_)