TEMPS / insight /.ipynb_checkpoints /insight_arch-checkpoint.py
lauracabayol's picture
optimized version working at low z
696a020
raw
history blame
1.49 kB
from torch import nn, optim
import torch
class Photoz_network(nn.Module):
def __init__(self, num_gauss=10, dropout_prob=0):
super(Photoz_network, self).__init__()
self.features = nn.Sequential(
nn.Linear(6, 10),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, 50),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(50, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, 10)
)
self.measure_mu = nn.Sequential(
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, num_gauss)
)
self.measure_coeffs = nn.Sequential(
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, num_gauss)
)
self.measure_sigma = nn.Sequential(
nn.Linear(10, 20),
nn.Dropout(dropout_prob),
nn.ReLU(),
nn.Linear(20, num_gauss)
)
def forward(self, x):
f = self.features(x)
mu = self.measure_mu(f)
sigma = self.measure_sigma(f)
logmix_coeff = self.measure_coeffs(f)
logmix_coeff = logmix_coeff - torch.logsumexp(logmix_coeff, 1)[:,None]
return mu, sigma, logmix_coeff