A-Roucher commited on
Commit
72c879a
1 Parent(s): c9fa165

feat: filter selection by author

Browse files
Files changed (1) hide show
  1. app.py +56 -42
app.py CHANGED
@@ -3,56 +3,70 @@ from sentence_transformers import SentenceTransformer
3
  import datasets
4
  import faiss
5
  import torch
 
 
6
 
7
- st.sidebar.text_input("Type your quote here")
8
 
9
- dataset = datasets.load_dataset('A-Roucher/english_historical_quotes', download_mode="force_redownload")
 
 
10
 
11
- dataset = datasets.Dataset.from_dict(dataset['train'][:100])
 
 
 
 
 
 
 
 
 
 
12
 
13
- model_name = "sentence-transformers/all-MiniLM-L6-v2" # BAAI/bge-small-en-v1.5" # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2"
14
- encoder = SentenceTransformer(model_name)
15
 
16
- embeddings = encoder.encode(
17
- dataset["quote"],
18
- batch_size=4,
19
- show_progress_bar=True,
20
- convert_to_numpy=True,
21
- normalize_embeddings=True,
22
- )
23
 
24
- # dataset_embeddings = datasets.Dataset.from_dict({"embeddings": embeddings})
25
- # dataset_embeddings.add_faiss_index(column="embeddings")
 
 
 
 
 
26
 
27
- # dataset_embeddings.save_faiss_index('embeddings', 'output/index_alone.faiss')
 
 
 
 
28
 
29
- # import faiss
30
 
31
- # index = faiss.read_index('index_alone.faiss')
 
 
 
 
 
 
32
 
33
- sentence = "Knowledge of history is power."
34
- sentence_embedding = encoder.encode([sentence])
35
- # scores, samples = dataset_embeddings.search(
36
- # sentence_embedding, k=10
37
- # )
38
- sentence_embedding_tensor = torch.Tensor(sentence_embedding)
39
- dataset_embeddings_tensor = torch.Tensor(embeddings)
40
- from sentence_transformers.util import semantic_search
41
 
42
- author_indexes = list(range(10))
43
- hits = semantic_search(sentence_embedding_tensor, dataset_embeddings_tensor[author_indexes, :], top_k=5)
44
-
45
- list_hits = [author_indexes[i['corpus_id']] for i in hits[0]]
46
- print(list_hits)
47
- print(dataset)
48
- st.write(dataset.select(list_hits))
49
-
50
- # sentence_embedding = model.encode([sentence])
51
- # scores, sample_indexes = QUOTES_INDEX.search(
52
- # sentence_embedding, k=k
53
- # )
54
- # quotes = QUOTES_DATASET.iloc[sample_indexes[0]]
55
- # author_descriptions_df = get_authors_descriptions(quotes['author'].unique())
56
- # quotes = quotes.merge(author_descriptions_df, on='author')
57
- # quotes["scores"] = scores[0]
58
- # quotes = quotes.sort_values("scores", ascending=True) # lower is better
 
 
3
  import datasets
4
  import faiss
5
  import torch
6
+ from sentence_transformers.util import semantic_search
7
+ import time
8
 
 
9
 
10
+ if "initialized" not in st.session_state:
11
+ dataset = datasets.load_dataset('A-Roucher/english_historical_quotes', download_mode="force_redownload")
12
+ st.session_state.dataset = datasets.Dataset.from_dict(dataset['train'][:100])
13
 
14
+ st.session_state.all_authors = list(set(st.session_state.dataset['author']))
15
+ model_name = "sentence-transformers/all-MiniLM-L6-v2" # BAAI/bge-small-en-v1.5" # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2"
16
+ st.session_state.encoder = SentenceTransformer(model_name)
17
+ st.session_state.embeddings = st.session_state.encoder.encode(
18
+ st.session_state.dataset["quote"],
19
+ batch_size=4,
20
+ show_progress_bar=True,
21
+ convert_to_numpy=True,
22
+ normalize_embeddings=True,
23
+ )
24
+ st.session_state.initialized=True
25
 
26
+ dataset_embeddings_tensor = torch.Tensor(st.session_state.embeddings)
 
27
 
28
+ sentence = "Knowledge of history is power."
 
 
 
 
 
 
29
 
30
+ def search(query, selected_authors):
31
+ start = time.time()
32
+ if len(query.strip()) == 0:
33
+ return ""
34
+
35
+ query_embedding = st.session_state.encoder.encode([query])
36
+ sentence_embedding_tensor = torch.Tensor(query_embedding)
37
 
38
+ if len(selected_authors) == 0:
39
+ author_indexes = [i for i in range(len(st.session_state.dataset))]
40
+ else:
41
+ author_indexes = [i for i in range(len(st.session_state.dataset)) if st.session_state.dataset['author'][i] in selected_authors]
42
+ hits = semantic_search(sentence_embedding_tensor, dataset_embeddings_tensor[author_indexes, :], top_k=5)
43
 
44
+ indices = [author_indexes[i['corpus_id']] for i in hits[0]]
45
 
46
+ if len(indices) == 0:
47
+ return ""
48
+ result = "\n\n"
49
+ for i in indices:
50
+ result += f"###### {st.session_state.dataset['author'][i]}\n> {st.session_state.dataset['quote'][i]}\n----\n"
51
+ delay = "%.3f" % (time.time() - start)
52
+ return f"_Computation time: **{delay} seconds**_{result}"
53
 
 
 
 
 
 
 
 
 
54
 
55
+ st.markdown(
56
+ """
57
+ <style>
58
+ div[data-testid="column"]
59
+ {
60
+ align-self:flex-end;
61
+ }
62
+ </style>
63
+ """,unsafe_allow_html=True
64
+ )
65
+ col1, col2 = st.columns([8, 2])
66
+ text_input = col1.text_input("Type your idea here:")
67
+ submit_button = col2.button("_Search quotes!_")
68
+ selected_authors = st.multiselect("(Optional) - Restrict search to these authors:", st.session_state.all_authors)
69
+
70
+ if submit_button:
71
+ st.markdown(search(text_input, selected_authors))
72
+