File size: 7,801 Bytes
bdd87a0
7306a42
f9a17d1
 
 
8aeda98
bdd87a0
f9a17d1
bdd87a0
f9a17d1
 
 
 
 
 
 
 
 
 
 
08e204f
f9a17d1
 
8aeda98
 
 
 
 
 
 
 
9324245
8aeda98
08e204f
f9a17d1
 
 
 
 
 
 
08e204f
f9a17d1
 
 
 
9324245
08e204f
b9296d6
 
 
 
 
 
 
 
 
 
 
9324245
8aeda98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a17d1
8aeda98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e204f
099bf82
f9a17d1
 
8aeda98
f9a17d1
 
 
 
9324245
 
 
 
 
 
 
 
 
 
099bf82
9324245
08e204f
b9296d6
 
 
8aeda98
f9a17d1
 
 
8aeda98
f9a17d1
8aeda98
f9a17d1
8aeda98
 
f9a17d1
9324245
 
 
 
 
 
 
 
 
 
 
 
f9a17d1
b9296d6
 
 
 
08e204f
f9a17d1
 
 
9324245
 
 
 
 
 
 
 
8aeda98
f9a17d1
bdd87a0
 
b9296d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
import matplotlib.pyplot as plt

PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

# Ensure TOKEN_COSTS is up to date when the module is loaded
try:
    response = requests.get(PRICES_URL)
    if response.status_code == 200:
        TOKEN_COSTS = response.json()
    else:
        raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
    print(f'Failed to update token costs with error: {e}. Using static costs.')
    with open("model_prices.json", "r") as f:
        TOKEN_COSTS = json.load(f)

TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[
    (~TOKEN_COSTS["model"].str.contains("sample_spec"))
    & (~TOKEN_COSTS["input_cost_per_token"].isnull())
    & (~TOKEN_COSTS["output_cost_per_token"].isnull())
    & (TOKEN_COSTS["input_cost_per_token"] > 0)
    & (TOKEN_COSTS["output_cost_per_token"] > 0)
]
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)

cmap = plt.get_cmap('RdYlGn_r')  # Red-Yellow-Green colormap, reversed

def count_string_tokens(string: str, model: str) -> int:
    try:
        encoding = tiktoken.encoding_for_model(model.split('/')[-1])
    except KeyError:
        print(f"Model {model} not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    return len(encoding.encode(string))

def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
    model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
    prompt_cost = prompt_tokens * model_data['input_cost_per_token']
    completion_cost = completion_tokens * model_data['output_cost_per_token']
    return prompt_cost, completion_cost

def update_model_list(function_calling, litellm_provider, max_price, supports_vision):
    filtered_models = TOKEN_COSTS

    if litellm_provider != "Any":
        filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
    
    if supports_vision:
        filtered_models = filtered_models[filtered_models['supports_vision']]
    
    list_models = filtered_models['model'].tolist()
    return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")

def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, models):
    results = []
    for model in models:
        if input_type == "Text Input":
            prompt_tokens = count_string_tokens(prompt_text, model)
            completion_tokens = count_string_tokens(completion_text, model)
        else:  # Token Count Input
            prompt_tokens = int(prompt_tokens * 1000)
            completion_tokens = int(completion_tokens * 1000)

        prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
        total_cost = prompt_cost + completion_cost
        
        results.append({
            "Model": model,
            "Prompt Cost": f"${prompt_cost:.6f}",
            "Completion Cost": f"${completion_cost:.6f}",
            "Total Cost": f"${total_cost:.6f}"
        })
    
    df = pd.DataFrame(results)
    
    # Convert cost columns to numeric, removing the '$' sign
    for col in ["Prompt Cost", "Completion Cost", "Total Cost"]:
        df[col] = df[col].str.replace('$', '').astype(float)

    if len(df) > 1:
        def apply_color(val, min, max):
            norm = plt.Normalize(min, max)
            color = cmap(norm(val))
            rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,)
            rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,)  # 0.5 for 50% opacity
            return f'background-color: rgba{rgba}'

        min, max = df["Total Cost"].min(), df["Total Cost"].max()
        df = df.style.applymap(lambda x: apply_color(x, min, max), subset=["Total Cost"])
        df = df.format({"Prompt Cost": "${:.6f}", "Completion Cost": "${:.6f}", "Total Cost": "${:.6f}"})
        df = df.set_properties(**{
            'font-family': 'Arial, sans-serif',
            'white-space': 'pre-wrap'
        })
        df = df.set_properties(**{'font-weight': 'bold'}, subset=['Total Cost'])
    return df

with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
    gr.Markdown("""
    # Text-to-$$$: Calculate the price of your LLM runs
    Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("## Input type")
            input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
            
            with gr.Group() as text_input_group:
                prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI. Here's an example: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
                completion_text = gr.Textbox(label="Completion", value="", lines=3)
            
            with gr.Group(visible=False) as token_input_group:
                prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
                completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)

            gr.Markdown("## Model choice:")
            with gr.Row():
                with gr.Column():
                    function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
                    supports_vision = gr.Checkbox(label="Supports Vision", value=False)
                litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
            
            max_price = gr.Slider(label="Max Price per Token (input + output)", minimum=0, maximum=0.001, step=0.00001, value=0.001)
            
            model = gr.Dropdown(label="Models (can select multiple)", choices=TOKEN_COSTS['model'].tolist(), value=[TOKEN_COSTS['model'].tolist()[0]], multiselect=True)
            
            compute_button = gr.Button("Compute Costs ⚙️", variant="secondary")

        with gr.Column(scale=2):
            results_table = gr.Dataframe(label="Cost Results")

    def toggle_input_visibility(choice):
        return (
            gr.Group(visible=(choice == "Text Input")),
            gr.Group(visible=(choice == "Token Count Input"))
        )

    input_type.change(
        toggle_input_visibility,
        inputs=[input_type],
        outputs=[text_input_group, token_input_group]
    )

    # Update model list based on criteria
    function_calling.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
    litellm_provider.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
    max_price.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
    supports_vision.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)

    # Compute costs
    compute_button.click(
        compute_all,
        inputs=[
            input_type,
            prompt_text,
            completion_text,
            prompt_tokens_input,
            completion_tokens_input,
            model
        ],
        outputs=[results_table]
    )

if __name__ == "__main__":
    demo.launch()