Spaces:
Running
Running
File size: 6,406 Bytes
bdd87a0 7306a42 f9a17d1 bdd87a0 f9a17d1 bdd87a0 f9a17d1 08e204f f9a17d1 099bf82 b9296d6 9324245 08e204f f9a17d1 08e204f f9a17d1 9324245 08e204f b9296d6 9324245 f9a17d1 9324245 f9a17d1 08e204f 099bf82 f9a17d1 9324245 099bf82 9324245 08e204f b9296d6 099bf82 f9a17d1 099bf82 f9a17d1 099bf82 f9a17d1 9324245 f9a17d1 b9296d6 08e204f f9a17d1 9324245 f9a17d1 bdd87a0 b9296d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
# Ensure TOKEN_COSTS is up to date when the module is loaded
try:
response = requests.get(PRICES_URL)
if response.status_code == 200:
TOKEN_COSTS = response.json()
else:
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
print(f'Failed to update token costs with error: {e}. Using static costs.')
with open("model_prices.json", "r") as f:
TOKEN_COSTS = json.load(f)
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[~TOKEN_COSTS["model"].str.contains("sample_spec")]
TOKEN_COSTS = TOKEN_COSTS.loc[~TOKEN_COSTS["input_cost_per_token"].isnull()]
def count_string_tokens(string: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
except KeyError:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(string))
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
completion_cost = completion_tokens * model_data['output_cost_per_token']
return prompt_cost, completion_cost
def update_model_list(function_calling, litellm_provider, max_price, supports_vision):
filtered_models = TOKEN_COSTS
if litellm_provider != "Any":
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
if supports_vision:
filtered_models = filtered_models[filtered_models['supports_vision']]
list_models = filtered_models['model'].tolist()
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, model):
if input_type == "Text Input":
prompt_tokens = count_string_tokens(prompt_text, model)
completion_tokens = count_string_tokens(completion_text, model)
else: # Token Count Input
prompt_tokens = int(prompt_tokens * 1000)
completion_tokens = int(completion_tokens * 1000)
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
total_cost = prompt_cost + completion_cost
return (
f"${prompt_cost:.6f}",
f"${completion_cost:.6f}",
f"${total_cost:.6f}"
)
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
gr.Markdown("""
# Text-to-$$$: Calculate the price of your LLM runs
Based on data from [litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Input type")
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
with gr.Group() as text_input_group:
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI. Here's an example: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
completion_text = gr.Textbox(label="Completion", value="", lines=3)
with gr.Group(visible=False) as token_input_group:
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)
gr.Markdown("## Model choice:")
with gr.Row():
with gr.Column():
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
litellm_provider = gr.Dropdown(label="LiteLLM Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
max_price = gr.Slider(label="Max Price per Token (input + output)", minimum=0, maximum=0.001, step=0.00001, value=0.001)
model = gr.Dropdown(label="Model", choices=TOKEN_COSTS['model'].tolist(), value=TOKEN_COSTS['model'].tolist()[0])
compute_button = gr.Button("Compute Costs", variant="secondary")
with gr.Column(scale=1):
with gr.Group():
prompt_cost = gr.Textbox(label="Prompt Cost", interactive=False)
completion_cost = gr.Textbox(label="Completion Cost", interactive=False)
total_cost = gr.Textbox(label="Total Cost", interactive=False)
def toggle_input_visibility(choice):
return (
gr.Group(visible=(choice == "Text Input")),
gr.Group(visible=(choice == "Token Count Input"))
)
input_type.change(
toggle_input_visibility,
inputs=[input_type],
outputs=[text_input_group, token_input_group]
)
# Update model list based on criteria
function_calling.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
litellm_provider.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
max_price.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
supports_vision.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
# Compute costs
compute_button.click(
compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=[prompt_cost, completion_cost, total_cost]
)
if __name__ == "__main__":
demo.launch() |