text_to_dollars / app.py
m-ric's picture
m-ric HF staff
Add table layout with multiple models
8aeda98
raw
history blame
7.8 kB
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
import matplotlib.pyplot as plt
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
# Ensure TOKEN_COSTS is up to date when the module is loaded
try:
response = requests.get(PRICES_URL)
if response.status_code == 200:
TOKEN_COSTS = response.json()
else:
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
print(f'Failed to update token costs with error: {e}. Using static costs.')
with open("model_prices.json", "r") as f:
TOKEN_COSTS = json.load(f)
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[
(~TOKEN_COSTS["model"].str.contains("sample_spec"))
& (~TOKEN_COSTS["input_cost_per_token"].isnull())
& (~TOKEN_COSTS["output_cost_per_token"].isnull())
& (TOKEN_COSTS["input_cost_per_token"] > 0)
& (TOKEN_COSTS["output_cost_per_token"] > 0)
]
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)
cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed
def count_string_tokens(string: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
except KeyError:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(string))
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
completion_cost = completion_tokens * model_data['output_cost_per_token']
return prompt_cost, completion_cost
def update_model_list(function_calling, litellm_provider, max_price, supports_vision):
filtered_models = TOKEN_COSTS
if litellm_provider != "Any":
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
if supports_vision:
filtered_models = filtered_models[filtered_models['supports_vision']]
list_models = filtered_models['model'].tolist()
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, models):
results = []
for model in models:
if input_type == "Text Input":
prompt_tokens = count_string_tokens(prompt_text, model)
completion_tokens = count_string_tokens(completion_text, model)
else: # Token Count Input
prompt_tokens = int(prompt_tokens * 1000)
completion_tokens = int(completion_tokens * 1000)
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
total_cost = prompt_cost + completion_cost
results.append({
"Model": model,
"Prompt Cost": f"${prompt_cost:.6f}",
"Completion Cost": f"${completion_cost:.6f}",
"Total Cost": f"${total_cost:.6f}"
})
df = pd.DataFrame(results)
# Convert cost columns to numeric, removing the '$' sign
for col in ["Prompt Cost", "Completion Cost", "Total Cost"]:
df[col] = df[col].str.replace('$', '').astype(float)
if len(df) > 1:
def apply_color(val, min, max):
norm = plt.Normalize(min, max)
color = cmap(norm(val))
rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,)
rgba = tuple(int(x * 255) for x in color[:3]) + (0.5,) # 0.5 for 50% opacity
return f'background-color: rgba{rgba}'
min, max = df["Total Cost"].min(), df["Total Cost"].max()
df = df.style.applymap(lambda x: apply_color(x, min, max), subset=["Total Cost"])
df = df.format({"Prompt Cost": "${:.6f}", "Completion Cost": "${:.6f}", "Total Cost": "${:.6f}"})
df = df.set_properties(**{
'font-family': 'Arial, sans-serif',
'white-space': 'pre-wrap'
})
df = df.set_properties(**{'font-weight': 'bold'}, subset=['Total Cost'])
return df
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
gr.Markdown("""
# Text-to-$$$: Calculate the price of your LLM runs
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Input type")
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
with gr.Group() as text_input_group:
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI. Here's an example: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
completion_text = gr.Textbox(label="Completion", value="", lines=3)
with gr.Group(visible=False) as token_input_group:
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)
gr.Markdown("## Model choice:")
with gr.Row():
with gr.Column():
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
max_price = gr.Slider(label="Max Price per Token (input + output)", minimum=0, maximum=0.001, step=0.00001, value=0.001)
model = gr.Dropdown(label="Models (can select multiple)", choices=TOKEN_COSTS['model'].tolist(), value=[TOKEN_COSTS['model'].tolist()[0]], multiselect=True)
compute_button = gr.Button("Compute Costs ⚙️", variant="secondary")
with gr.Column(scale=2):
results_table = gr.Dataframe(label="Cost Results")
def toggle_input_visibility(choice):
return (
gr.Group(visible=(choice == "Text Input")),
gr.Group(visible=(choice == "Token Count Input"))
)
input_type.change(
toggle_input_visibility,
inputs=[input_type],
outputs=[text_input_group, token_input_group]
)
# Update model list based on criteria
function_calling.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
litellm_provider.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
max_price.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
supports_vision.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
# Compute costs
compute_button.click(
compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=[results_table]
)
if __name__ == "__main__":
demo.launch()