text_to_dollars / app.py
m-ric's picture
m-ric HF staff
Add vision support
b9296d6
raw
history blame
6.41 kB
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
# Ensure TOKEN_COSTS is up to date when the module is loaded
try:
response = requests.get(PRICES_URL)
if response.status_code == 200:
TOKEN_COSTS = response.json()
else:
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
print(f'Failed to update token costs with error: {e}. Using static costs.')
with open("model_prices.json", "r") as f:
TOKEN_COSTS = json.load(f)
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[~TOKEN_COSTS["model"].str.contains("sample_spec")]
TOKEN_COSTS = TOKEN_COSTS.loc[~TOKEN_COSTS["input_cost_per_token"].isnull()]
def count_string_tokens(string: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
except KeyError:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(string))
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
completion_cost = completion_tokens * model_data['output_cost_per_token']
return prompt_cost, completion_cost
def update_model_list(function_calling, litellm_provider, max_price, supports_vision):
filtered_models = TOKEN_COSTS
if litellm_provider != "Any":
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
if supports_vision:
filtered_models = filtered_models[filtered_models['supports_vision']]
list_models = filtered_models['model'].tolist()
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, model):
if input_type == "Text Input":
prompt_tokens = count_string_tokens(prompt_text, model)
completion_tokens = count_string_tokens(completion_text, model)
else: # Token Count Input
prompt_tokens = int(prompt_tokens * 1000)
completion_tokens = int(completion_tokens * 1000)
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
total_cost = prompt_cost + completion_cost
return (
f"${prompt_cost:.6f}",
f"${completion_cost:.6f}",
f"${total_cost:.6f}"
)
with gr.Blocks(theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
gr.Markdown("""
# Text-to-$$$: Calculate the price of your LLM runs
Based on data from [litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("## Input type")
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
with gr.Group() as text_input_group:
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI. Here's an example: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
completion_text = gr.Textbox(label="Completion", value="", lines=3)
with gr.Group(visible=False) as token_input_group:
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)
gr.Markdown("## Model choice:")
with gr.Row():
with gr.Column():
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
litellm_provider = gr.Dropdown(label="LiteLLM Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
max_price = gr.Slider(label="Max Price per Token (input + output)", minimum=0, maximum=0.001, step=0.00001, value=0.001)
model = gr.Dropdown(label="Model", choices=TOKEN_COSTS['model'].tolist(), value=TOKEN_COSTS['model'].tolist()[0])
compute_button = gr.Button("Compute Costs", variant="secondary")
with gr.Column(scale=1):
with gr.Group():
prompt_cost = gr.Textbox(label="Prompt Cost", interactive=False)
completion_cost = gr.Textbox(label="Completion Cost", interactive=False)
total_cost = gr.Textbox(label="Total Cost", interactive=False)
def toggle_input_visibility(choice):
return (
gr.Group(visible=(choice == "Text Input")),
gr.Group(visible=(choice == "Token Count Input"))
)
input_type.change(
toggle_input_visibility,
inputs=[input_type],
outputs=[text_input_group, token_input_group]
)
# Update model list based on criteria
function_calling.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
litellm_provider.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
max_price.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
supports_vision.change(update_model_list, inputs=[function_calling, litellm_provider, max_price, supports_vision], outputs=model)
# Compute costs
compute_button.click(
compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=[prompt_cost, completion_cost, total_cost]
)
if __name__ == "__main__":
demo.launch()