Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import requests | |
import json | |
import tiktoken | |
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json" | |
# Ensure TOKEN_COSTS is up to date when the module is loaded | |
try: | |
response = requests.get(PRICES_URL) | |
if response.status_code == 200: | |
TOKEN_COSTS = response.json() | |
else: | |
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}") | |
except Exception as e: | |
print(f'Failed to update token costs with error: {e}. Using static costs.') | |
with open("model_prices.json", "r") as f: | |
TOKEN_COSTS = json.load(f) | |
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index() | |
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:]) | |
def count_string_tokens(string: str, model: str) -> int: | |
"""Returns the number of tokens in a text string.""" | |
try: | |
encoding = tiktoken.encoding_for_model(model.split('/')[-1]) | |
except KeyError: | |
print(f"Model {model} not found. Using cl100k_base encoding.") | |
encoding = tiktoken.get_encoding("cl100k_base") | |
return len(encoding.encode(string)) | |
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float: | |
"""Calculate the total cost for a given model and number of tokens.""" | |
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0] | |
prompt_cost = prompt_tokens * model_data['input_cost_per_token'] | |
completion_cost = completion_tokens * model_data['output_cost_per_token'] | |
return prompt_cost + completion_cost | |
def update_model_list(function_calling, litellm_provider, max_price): | |
filtered_models = TOKEN_COSTS[ | |
(TOKEN_COSTS['supports_function_calling'] == function_calling) & | |
(TOKEN_COSTS['litellm_provider'] == litellm_provider) & | |
(TOKEN_COSTS['input_cost_per_token'] + TOKEN_COSTS['output_cost_per_token'] <= max_price) | |
] | |
return filtered_models['model'].tolist() | |
def compute_all(prompt_string, completion_string, model): | |
prompt_tokens = count_string_tokens(prompt_string, model) | |
completion_tokens = count_string_tokens(completion_string, model) | |
cost = calculate_total_cost(prompt_tokens, completion_tokens, model) | |
prompt_cost = prompt_tokens * TOKEN_COSTS[TOKEN_COSTS['model'] == model]['input_cost_per_token'].values[0] | |
completion_cost = completion_tokens * TOKEN_COSTS[TOKEN_COSTS['model'] == model]['output_cost_per_token'].values[0] | |
return ( | |
f"{prompt_tokens} tokens", | |
f"${prompt_cost:.6f}", | |
f"{completion_tokens} tokens", | |
f"${completion_cost:.6f}", | |
f"${cost:.6f}" | |
) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# Text-to-$$$: Calculate the price of your LLM runs | |
Based on data from [litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json). | |
""") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
prompt = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3) | |
completion = gr.Textbox(label="Completion", value="Here's a joke about AI: Why did the AI go to therapy? It had too many deep issues!", lines=3) | |
with gr.Row(): | |
function_calling = gr.Checkbox(label="Supports Function Calling") | |
litellm_provider = gr.Dropdown(label="LiteLLM Provider", choices=TOKEN_COSTS['litellm_provider'].unique().tolist()) | |
max_price = gr.Slider(label="Max Price per Token (input + output)", minimum=0, maximum=0.001, step=0.00001, value=0.001) | |
model = gr.Dropdown(label="Model", choices=TOKEN_COSTS['model'].tolist()) | |
compute_button = gr.Button("Compute Costs", variant="primary") | |
with gr.Column(scale=1): | |
with gr.Group(): | |
prompt_tokens = gr.Textbox(label="Prompt Tokens", interactive=False) | |
prompt_cost = gr.Textbox(label="Prompt Cost", interactive=False) | |
completion_tokens = gr.Textbox(label="Completion Tokens", interactive=False) | |
completion_cost = gr.Textbox(label="Completion Cost", interactive=False) | |
total_cost = gr.Textbox(label="Total Cost", interactive=False) | |
# Update model list based on criteria | |
function_calling.change(update_model_list, inputs=[function_calling, litellm_provider, max_price], outputs=model) | |
litellm_provider.change(update_model_list, inputs=[function_calling, litellm_provider, max_price], outputs=model) | |
max_price.change(update_model_list, inputs=[function_calling, litellm_provider, max_price], outputs=model) | |
# Compute costs | |
compute_button.click( | |
compute_all, | |
inputs=[prompt, completion, model], | |
outputs=[prompt_tokens, prompt_cost, completion_tokens, completion_cost, total_cost] | |
) | |
if __name__ == "__main__": | |
demo.launch() |