File size: 11,798 Bytes
0c7bd3c 1ab5fce 1e49352 549dce5 feeb9a7 0c7bd3c 7a9e2a5 4ebc26e f5ca364 760198b 4ebc26e 760198b 4ebc26e 760198b a487212 e4585e1 a487212 0444d24 8178bd6 a487212 0444d24 a487212 39af631 2b247e6 cb8a6f1 39af631 2b247e6 39af631 a487212 a59692f c79fa53 a59692f a487212 e9802f8 dccc55e 2b247e6 a487212 a94912c e9802f8 196c075 b3f5783 0444d24 b3f5783 0444d24 b3f5783 4ebc26e 0444d24 b3f5783 0444d24 196c075 39af631 227b789 0444d24 39af631 4f241c1 39af631 0444d24 39af631 0444d24 4f241c1 39af631 0444d24 09eae4c 227b789 0444d24 4ebc26e 09eae4c 0444d24 09eae4c 4ebc26e 0444d24 09eae4c 0444d24 09eae4c 227b789 0444d24 09eae4c 0444d24 09eae4c 0444d24 09eae4c 0444d24 77c0943 a487212 a94912c a487212 e9802f8 a487212 77c0943 a487212 e9802f8 39af631 0d88b0c a487212 14f4c84 a487212 a94912c a487212 0c7bd3c 1ab5fce 0d88b0c c1ff6b3 a487212 39af631 a487212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import tempfile
import os
import tiktoken
import streamlit as st
from llama_index.core import (
VectorStoreIndex,
Settings,
)
from llama_parse import LlamaParse
from streamlit_pdf_viewer import pdf_viewer
class MistralTokens:
"""
Returns tokens for MistralAI models.
See: https://docs.mistral.ai/guides/tokenization/
"""
def __init__(self, llm_name):
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
if 'open-mistral-nemo' in llm_name:
self.tokenizer = MistralTokenizer.v3(is_tekken=True)
else:
# This might work for all models, but their documentation is unclear.
self.tokenizer = MistralTokenizer.from_model(llm_name)
def __call__(self, input):
"""This returns all the tokens indices in a list since LlamaIndex seems to count by calling `len()` on the tokenizer function."""
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
return self.tokenizer.encode_chat_completion(
ChatCompletionRequest(
tools=[],
messages=[
UserMessage(content=input)
]
)
).tokens
class GeminiTokens:
"""
Returns tokens for Gemini models.
See: https://medium.com/google-cloud/counting-gemini-text-tokens-locally-with-the-vertex-ai-sdk-78979fea6244
"""
def __init__(self, llm_name):
from vertexai.preview import tokenization
self.tokenizer = tokenization.get_tokenizer_for_model(llm_name)
def __call__(self, input):
"""This returns all the tokens in a list since LlamaIndex seems to count by calling `len()` on the tokenizer function."""
tokens = []
for list in self.tokenizer.compute_tokens(input).token_info_list:
tokens += list.tokens
return tokens
def main():
with st.sidebar:
st.title('Document Summarization and QA System')
# Select Provider
provider = st.selectbox(
label="Select LLM Provider",
options=['google', 'huggingface', 'mistralai', 'openai'],
index=3
)
# Select LLM
if provider == 'google':
llm_list = ['gemini-1.0-pro', 'gemini-1.5-flash', 'gemini-1.5-pro']
elif provider == 'huggingface':
llm_list = []
elif provider == 'mistralai':
llm_list = ["mistral-large-latest", "open-mistral-nemo-latest"]
elif provider == 'openai':
llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o', 'gpt-4o-mini']
else:
llm_list = []
if provider == 'huggingface':
llm_name = st.text_input(
"Enter LLM namespace/model-name",
value="HuggingFaceH4/zephyr-7b-alpha",
)
# Also give the user the option for different embedding models, too
embed_name = st.text_input(
label="Enter embedding namespace/model-name",
value="BAAI/bge-small-en-v1.5",
)
else:
llm_name = st.selectbox(
label="Select LLM Model",
options=llm_list,
index=0
)
# Temperature
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.05,
)
# Enter Parsing API Key
parse_key = st.text_input(
"Enter your LlamaParse API Key",
value=None
)
# Enter LLM API Key
llm_key = st.text_input(
"Enter your LLM provider API Key",
value=None,
)
# Create LLM
# Global tokenization needs to be consistent with LLM for token counting
# https://docs.llamaindex.ai/en/stable/module_guides/models/llms/
if llm_key is not None:
if provider == 'google':
from llama_index.llms.gemini import Gemini
from llama_index.embeddings.gemini import GeminiEmbedding
max_output_tokens = 8192 # https://firebase.google.com/docs/vertex-ai/gemini-models
os.environ['GOOGLE_API_KEY'] = str(llm_key)
Settings.llm = Gemini(
model=f"models/{llm_name}",
token=os.environ.get("GOOGLE_API_KEY"),
temperature=temperature,
max_tokens=max_output_tokens
)
Settings.tokenizer = GeminiTokens(llm_name)
Settings.num_output = max_output_tokens
Settings.embed_model = GeminiEmbedding(
model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
)
if llm_name == 'gemini-1.0-pro':
total_token_limit = 32760
else:
total_token_limit = 1e6
Settings.context_window = total_token_limit - max_output_tokens # Gemini counts total tokens
elif provider == 'huggingface':
if llm_name is not None and embed_name is not None:
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceInferenceAPIEmbedding
from transformers import AutoTokenizer
max_output_tokens = 2048 # Just a generic value
os.environ['HFTOKEN'] = str(llm_key)
Settings.llm = HuggingFaceInferenceAPI(
model_name=llm_name,
token=os.environ.get("HFTOKEN"),
temperature=temperature,
max_tokens=max_output_tokens
)
Settings.tokenizer = AutoTokenizer.from_pretrained(
llm_name,
token=os.environ.get("HFTOKEN"),
)
Settings.num_output = max_output_tokens
Settings.embed_model = HuggingFaceInferenceAPIEmbedding(
model_name=embed_name
)
Settings.context_window = 4096 # Just a generic value
elif provider == 'mistralai':
from llama_index.llms.mistralai import MistralAI
from llama_index.embeddings.mistralai import MistralAIEmbedding
max_output_tokens = 8192 # Based on internet consensus since this is not well documented
os.environ['MISTRAL_API_KEY'] = str(llm_key)
Settings.llm = MistralAI(
model=llm_name,
temperature=temperature,
max_tokens=max_output_tokens,
random_seed=42,
safe_mode=True
)
Settings.tokenizer = MistralTokens(llm_name)
Settings.num_output = max_output_tokens
Settings.embed_model = MistralAIEmbedding(
model_name="mistral-embed",
api_key=os.environ.get("MISTRAL_API_KEY")
)
Settings.context_window = 128000 # 128k for flagship models - doesn't seem to count input tokens
elif provider == 'openai':
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
# https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
if llm_name == 'gpt-3.5-turbo':
max_output_tokens = 4096
context_window = 16385
elif llm_name == 'gpt-4' :
max_output_tokens = 8192
context_window = 8192
elif llm_name == 'gpt-4-turbo'
max_output_tokens = 4096
context_window = 128000
elif llm_name == 'gpt-4o':
max_output_tokens = 4096
context_window = 128000
elif llm_name == 'gpt-4o-mini':
max_output_tokens = 16384
context_window = 128000
os.environ["OPENAI_API_KEY"] = str(llm_key)
Settings.llm = OpenAI(
model=llm_name,
temperature=temperature,
max_tokens=max_output_tokens
)
Settings.tokenizer = tiktoken.encoding_for_model(llm_name).encode
Settings.num_output = max_output_tokens
Settings.embed_model = OpenAIEmbedding()
Settings.context_window = context_window
else:
raise NotImplementedError(f"{provider} is not supported yet")
uploaded_file = st.file_uploader(
"Choose a PDF file to upload",
type=['pdf'],
accept_multiple_files=False
)
parsed_document = None
if uploaded_file is not None:
# Parse the file
parser = LlamaParse(
api_key=parse_key, # Can also be set in your env as LLAMA_CLOUD_API_KEY
result_type="text" # "markdown" and "text" are available
)
# Create a temporary directory to save the file then load and parse it
temp_dir = tempfile.TemporaryDirectory()
temp_filename = os.path.join(temp_dir.name, uploaded_file.name)
with open(temp_filename, "wb") as f:
f.write(uploaded_file.getvalue())
parsed_document = parser.load_data(temp_filename)
temp_dir.cleanup()
col1, col2 = st.columns(2)
with col2:
tab1, tab2 = st.tabs(["Uploaded File", "Parsed File",])
with tab1:
if uploaded_file is not None: # Display the pdf
bytes_data = uploaded_file.getvalue()
pdf_viewer(input=bytes_data, width=700)
with tab2:
if parsed_document is not None: # Showed the raw parsing result
st.write(parsed_document)
with col1:
st.markdown(
"""
# Instructions
1. Obtain an [API Key](https://cloud.llamaindex.ai/api-key) from LlamaParse to parse your document.
2. Obtain a similar API Key from your preferred LLM provider. Note, if you are using [Hugging Face](https://huggingface.co/models) you may need to request access to a model if it is gated.
3. Make selections at the left and upload a document to use as context.
4. Begin asking questions below!
"""
)
st.divider()
prompt_txt = 'You are a trusted scientific expert that only responds truthfully to inquiries. Summarize this document in a 3-5 sentences.'
prompt = st.text_area(
label="Enter your query.",
key="prompt_widget",
value=prompt_txt
)
run = st.button("Answer", type="primary")
if parsed_document is not None and run:
index = VectorStoreIndex.from_documents(parsed_document)
query_engine = index.as_query_engine()
response = query_engine.query(prompt)
st.write(response.response)
if __name__ == '__main__':
# Global configurations
# from llama_index.core import set_global_handler
# set_global_handler("langfuse")
# Also add API Key for this if using
st.set_page_config(layout="wide")
main() |