File size: 11,798 Bytes
0c7bd3c
1ab5fce
1e49352
549dce5
 
feeb9a7
 
 
 
 
0c7bd3c
7a9e2a5
 
4ebc26e
 
 
 
 
 
 
 
f5ca364
 
 
 
 
760198b
4ebc26e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760198b
4ebc26e
760198b
 
 
 
 
 
 
 
 
 
 
 
 
 
a487212
 
 
 
 
 
 
 
e4585e1
a487212
 
 
 
0444d24
8178bd6
a487212
 
0444d24
a487212
 
 
 
 
39af631
 
2b247e6
cb8a6f1
39af631
 
 
 
2b247e6
39af631
 
 
 
 
 
 
 
a487212
 
 
 
 
 
 
 
 
 
a59692f
 
 
c79fa53
a59692f
a487212
e9802f8
 
dccc55e
2b247e6
a487212
 
 
a94912c
 
e9802f8
196c075
b3f5783
 
0444d24
 
b3f5783
 
 
 
 
0444d24
b3f5783
4ebc26e
0444d24
b3f5783
 
 
0444d24
 
 
 
 
196c075
39af631
227b789
 
 
 
0444d24
 
39af631
4f241c1
39af631
 
 
0444d24
39af631
 
 
 
 
0444d24
4f241c1
39af631
 
0444d24
09eae4c
227b789
 
0444d24
4ebc26e
09eae4c
 
 
 
0444d24
09eae4c
 
 
4ebc26e
0444d24
09eae4c
 
 
 
0444d24
09eae4c
227b789
 
 
0444d24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09eae4c
 
 
 
0444d24
09eae4c
 
0444d24
09eae4c
0444d24
77c0943
 
a487212
 
 
a94912c
a487212
 
 
 
 
 
 
e9802f8
a487212
 
 
 
 
 
 
 
 
 
 
 
 
77c0943
 
 
 
 
 
 
 
 
 
 
 
a487212
 
 
 
 
e9802f8
39af631
0d88b0c
a487212
 
 
 
 
 
14f4c84
a487212
a94912c
a487212
 
0c7bd3c
1ab5fce
0d88b0c
 
 
c1ff6b3
 
 
 
a487212
 
 
39af631
 
 
 
a487212
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import tempfile
import os
import tiktoken
import streamlit as st

from llama_index.core import (
    VectorStoreIndex,
    Settings,
)

from llama_parse import LlamaParse
from streamlit_pdf_viewer import pdf_viewer

class MistralTokens:
    """
    Returns tokens for MistralAI models.
    
    See: https://docs.mistral.ai/guides/tokenization/
    """
    def __init__(self, llm_name):
        from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
        if 'open-mistral-nemo' in llm_name:
            self.tokenizer = MistralTokenizer.v3(is_tekken=True)
        else:
            # This might work for all models, but their documentation is unclear.
            self.tokenizer = MistralTokenizer.from_model(llm_name)

    def __call__(self, input):
        """This returns all the tokens indices in a list since LlamaIndex seems to count by calling `len()` on the tokenizer function."""
        from mistral_common.protocol.instruct.messages import UserMessage
        from mistral_common.protocol.instruct.request import ChatCompletionRequest

        return self.tokenizer.encode_chat_completion(
            ChatCompletionRequest(
                tools=[], 
                messages=[
                    UserMessage(content=input)
                ]
            )
        ).tokens

class GeminiTokens:
    """
    Returns tokens for Gemini models.
    
    See: https://medium.com/google-cloud/counting-gemini-text-tokens-locally-with-the-vertex-ai-sdk-78979fea6244
    """
    def __init__(self, llm_name):
        from vertexai.preview import tokenization
        self.tokenizer = tokenization.get_tokenizer_for_model(llm_name)

    def __call__(self, input):
        """This returns all the tokens in a list since LlamaIndex seems to count by calling `len()` on the tokenizer function."""
        tokens = []
        for list in self.tokenizer.compute_tokens(input).token_info_list:
            tokens += list.tokens
        return tokens
        
def main():
    with st.sidebar:
        st.title('Document Summarization and QA System')

        # Select Provider
        provider = st.selectbox(
            label="Select LLM Provider",
            options=['google', 'huggingface', 'mistralai', 'openai'],
            index=3
        )

        # Select LLM
        if provider == 'google':
            llm_list = ['gemini-1.0-pro', 'gemini-1.5-flash', 'gemini-1.5-pro']
        elif provider == 'huggingface':
            llm_list = []
        elif provider == 'mistralai':
            llm_list = ["mistral-large-latest", "open-mistral-nemo-latest"]
        elif provider == 'openai':
            llm_list = ['gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'gpt-4o', 'gpt-4o-mini']
        else:
            llm_list = []

        if provider == 'huggingface':
            llm_name = st.text_input(
                "Enter LLM namespace/model-name",
                value="HuggingFaceH4/zephyr-7b-alpha",
            )

            # Also give the user the option for different embedding models, too
            embed_name = st.text_input(
                label="Enter embedding namespace/model-name",
                value="BAAI/bge-small-en-v1.5",
            )
        else:
            llm_name = st.selectbox(
                label="Select LLM Model",
                options=llm_list,
                index=0
            )

        # Temperature
        temperature = st.slider(
            "Temperature",
            min_value=0.0, 
            max_value=1.0, 
            value=0.0, 
            step=0.05, 
        )

        # Enter Parsing API Key
        parse_key = st.text_input(
            "Enter your LlamaParse API Key",
            value=None
        )

        # Enter LLM API Key
        llm_key = st.text_input(
            "Enter your LLM provider API Key",
            value=None,
        )

        # Create LLM
        # Global tokenization needs to be consistent with LLM for token counting
        # https://docs.llamaindex.ai/en/stable/module_guides/models/llms/
        if llm_key is not None:
            if provider == 'google':
                from llama_index.llms.gemini import Gemini
                from llama_index.embeddings.gemini import GeminiEmbedding
                max_output_tokens = 8192 # https://firebase.google.com/docs/vertex-ai/gemini-models
                
                os.environ['GOOGLE_API_KEY'] = str(llm_key)
                Settings.llm = Gemini(
                    model=f"models/{llm_name}",
                    token=os.environ.get("GOOGLE_API_KEY"),
                    temperature=temperature,
                    max_tokens=max_output_tokens
                )
                Settings.tokenizer = GeminiTokens(llm_name) 
                Settings.num_output = max_output_tokens
                Settings.embed_model = GeminiEmbedding(
                    model_name="models/text-embedding-004", api_key=os.environ.get("GOOGLE_API_KEY") #, title="this is a document"
                )
                if llm_name == 'gemini-1.0-pro':
                    total_token_limit = 32760
                else:
                    total_token_limit = 1e6
                Settings.context_window = total_token_limit -  max_output_tokens # Gemini counts total tokens
            elif provider == 'huggingface':
                if llm_name is not None and embed_name is not None:
                    from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI 
                    from llama_index.embeddings.huggingface import HuggingFaceInferenceAPIEmbedding
                    from transformers import AutoTokenizer

                    max_output_tokens = 2048 # Just a generic value

                    os.environ['HFTOKEN'] = str(llm_key)
                    Settings.llm = HuggingFaceInferenceAPI(
                        model_name=llm_name, 
                        token=os.environ.get("HFTOKEN"),
                        temperature=temperature,
                        max_tokens=max_output_tokens
                    )
                    Settings.tokenizer = AutoTokenizer.from_pretrained(
                        llm_name,
                        token=os.environ.get("HFTOKEN"),
                    )
                    Settings.num_output = max_output_tokens
                    Settings.embed_model = HuggingFaceInferenceAPIEmbedding(
                        model_name=embed_name
                    )
                    Settings.context_window = 4096 # Just a generic value
            elif provider == 'mistralai':
                from llama_index.llms.mistralai import MistralAI
                from llama_index.embeddings.mistralai import MistralAIEmbedding
                max_output_tokens = 8192 # Based on internet consensus since this is not well documented
                
                os.environ['MISTRAL_API_KEY'] = str(llm_key)
                Settings.llm = MistralAI(
                    model=llm_name, 
                    temperature=temperature,
                    max_tokens=max_output_tokens,
                    random_seed=42,
                    safe_mode=True
                )
                Settings.tokenizer = MistralTokens(llm_name)
                Settings.num_output = max_output_tokens
                Settings.embed_model = MistralAIEmbedding(
                    model_name="mistral-embed", 
                    api_key=os.environ.get("MISTRAL_API_KEY")
                )
                Settings.context_window = 128000 # 128k for flagship models - doesn't seem to count input tokens
            elif provider == 'openai':
                from llama_index.llms.openai import OpenAI
                from llama_index.embeddings.openai import OpenAIEmbedding

                # https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
                if llm_name == 'gpt-3.5-turbo':
                    max_output_tokens = 4096
                    context_window = 16385
                elif llm_name == 'gpt-4' :
                    max_output_tokens = 8192
                    context_window = 8192
                elif llm_name == 'gpt-4-turbo'
                    max_output_tokens = 4096
                    context_window = 128000
                elif llm_name == 'gpt-4o':
                    max_output_tokens = 4096
                    context_window = 128000
                elif llm_name == 'gpt-4o-mini':
                    max_output_tokens = 16384
                    context_window = 128000

                os.environ["OPENAI_API_KEY"] = str(llm_key)
                Settings.llm = OpenAI(
                    model=llm_name, 
                    temperature=temperature,
                    max_tokens=max_output_tokens
                )
                Settings.tokenizer = tiktoken.encoding_for_model(llm_name).encode
                Settings.num_output = max_output_tokens
                Settings.embed_model = OpenAIEmbedding()
                Settings.context_window = context_window 
            else:
                raise NotImplementedError(f"{provider} is not supported yet")

        uploaded_file = st.file_uploader(
            "Choose a PDF file to upload", 
            type=['pdf'], 
            accept_multiple_files=False
        )

        parsed_document = None
        if uploaded_file is not None:
            # Parse the file
            parser = LlamaParse(
                api_key=parse_key,  # Can also be set in your env as LLAMA_CLOUD_API_KEY
                result_type="text"  # "markdown" and "text" are available
            )

            # Create a temporary directory to save the file then load and parse it
            temp_dir = tempfile.TemporaryDirectory()
            temp_filename = os.path.join(temp_dir.name, uploaded_file.name)
            with open(temp_filename, "wb") as f:
                f.write(uploaded_file.getvalue())
            parsed_document = parser.load_data(temp_filename)
            temp_dir.cleanup()

    col1, col2 = st.columns(2)

    with col2:
        tab1, tab2 = st.tabs(["Uploaded File", "Parsed File",])

        with tab1:
            if uploaded_file is not None: # Display the pdf
                bytes_data = uploaded_file.getvalue()
                pdf_viewer(input=bytes_data, width=700)    
        
        with tab2:
            if parsed_document is not None: # Showed the raw parsing result
                st.write(parsed_document)

    with col1:
        st.markdown(
            """
            # Instructions

            1. Obtain an [API Key](https://cloud.llamaindex.ai/api-key) from LlamaParse to parse your document. 
            2. Obtain a similar API Key from your preferred LLM provider. Note, if you are using [Hugging Face](https://huggingface.co/models) you may need to request access to a model if it is gated.
            3. Make selections at the left and upload a document to use as context.
            4. Begin asking questions below!
            """
        )

        st.divider()

        prompt_txt = 'You are a trusted scientific expert that only responds truthfully to inquiries. Summarize this document in a 3-5 sentences.'
        prompt = st.text_area(
            label="Enter your query.",
            key="prompt_widget",
            value=prompt_txt
        )

        run = st.button("Answer", type="primary")

        if parsed_document is not None and run:
            index = VectorStoreIndex.from_documents(parsed_document)
            query_engine = index.as_query_engine()
            response = query_engine.query(prompt)
            st.write(response.response)

if __name__ == '__main__':
    # Global configurations
    # from llama_index.core import set_global_handler
    # set_global_handler("langfuse")
    # Also add API Key for this if using

    st.set_page_config(layout="wide")

    main()