File size: 5,101 Bytes
a83f80b 4f2c346 509d266 4f2c346 81eed54 8404815 509d266 6671a55 a83f80b 9660558 7c020ac 4f2c346 6c5db00 ec39d42 6c5db00 7c020ac 9660558 509d266 fe7c35d 509d266 9660558 509d266 ec39d42 fe7c35d 81eed54 fe7c35d 81eed54 fe7c35d 81eed54 fe7c35d ec39d42 63644af ec39d42 63644af 6c5db00 ec39d42 6c5db00 ec39d42 fe7c35d ec39d42 6c5db00 fe7c35d ec39d42 509d266 ec39d42 63644af fe7c35d 509d266 81eed54 63644af 509d266 63644af 509d266 837f208 81eed54 ec39d42 63644af 7c020ac fe7c35d 509d266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import fasttext
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
import pandas as pd
import torch
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
title = "Movie Review Score Discriminator"
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. \
You can choose between the Korean version and the English version. \
It also provides a version called Any, which determines whether it is Korean or English and predicts it."
class LanguageIdentification:
def __init__(self):
pretrained_lang_model = "./lid.176.ftz"
self.model = fasttext.load_model(pretrained_lang_model)
def predict_lang(self, text):
predictions = self.model.predict(text, k=200) # returns top 200 matching languages
return predictions
LANGUAGE = LanguageIdentification()
def tokenized_data(tokenizer, inputs):
return tokenizer.batch_encode_plus(
[inputs],
return_tensors="pt",
padding="max_length",
max_length=64,
truncation=True)
examples = []
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
np.random.seed(100)
idx = np.random.choice(50, size=5, replace=False)
eng_examples = [ ['Eng', df.iloc[i, 0]] for i in idx ]
kor_examples = [ ['Kor', df.iloc[i, 1]] for i in idx ]
examples = eng_examples + kor_examples
eng_model_name = "roberta-base"
eng_step = 1900
eng_tokenizer = AutoTokenizer.from_pretrained(eng_model_name)
eng_file_name = "{}-{}.pt".format(eng_model_name, eng_step)
eng_state_dict = torch.load(eng_file_name)
eng_model = AutoModelForSequenceClassification.from_pretrained(
eng_model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=eng_state_dict
)
kor_model_name = "klue/roberta-small"
kor_step = 2400
kor_tokenizer = AutoTokenizer.from_pretrained(kor_model_name)
kor_file_name = "{}-{}.pt".format(kor_model_name.replace('/', '_'), kor_step)
kor_state_dict = torch.load(kor_file_name)
kor_model = AutoModelForSequenceClassification.from_pretrained(
kor_model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=kor_state_dict
)
def builder(lang, text):
percent_kor, percent_eng = 0, 0
text_list = text.split(' ')
# [ output_1 ]
if lang == 'Any':
pred = LANGUAGE.predict_lang(text)
if '__label__en' in pred[0]:
lang = 'Eng'
idx = pred[0].index('__label__en')
percent_eng = pred[1][idx]
if '__label__ko' in pred[0]:
lang = 'Kor'
idx = pred[0].index('__label__ko')
percent_kor = pred[1][idx]
if lang == 'Eng':
model = eng_model
tokenizer = eng_tokenizer
if percent_eng==0: percent_eng=1
if lang == 'Kor':
model = kor_model
tokenizer = kor_tokenizer
if percent_kor==0: percent_kor=1
# [ output_2 ]
inputs = tokenized_data(tokenizer, text)
model.eval()
with torch.no_grad():
logits = model(input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask']).logits
m = torch.nn.Softmax(dim=1)
output = m(logits)
# print(logits, output)
# [ output_3 ]
output_analysis = []
for word in text_list:
tokenized_word = tokenized_data(tokenizer, word)
with torch.no_grad():
logit = model(input_ids=tokenized_word['input_ids'],
attention_mask=tokenized_word['attention_mask']).logits
word_output = m(logit)
if word_output[0][1] > 0.95:
output_analysis.append( (word, '+') )
elif word_output[0][1] < 0.05:
output_analysis.append( (word, '-') )
else:
output_analysis.append( (word, None) )
return [ {'Kor': percent_kor, 'Eng': percent_eng, 'Other': 1-(percent_kor+percent_eng)},
{id2label[1]: output[0][1].item(), id2label[0]: output[0][0].item()},
output_analysis ]
# prediction = torch.argmax(logits, axis=1)
return id2label[prediction.item()]
# demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text",
# title=title, theme="peach",
# allow_flagging="auto",
# description=description, examples=examples)
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Any', 'Eng', 'Kor']), "text"],
outputs=[ gr.Label(num_top_classes=3, label='Lang'),
gr.Label(num_top_classes=2, label='Result'),
gr.HighlightedText(label="Analysis", combine_adjacent=False).style(color_map={"+": "red", "-": "green"}) ],
# outputs='label',
title=title, description=description, examples=examples)
if __name__ == "__main__":
# print(examples)
demo.launch()
# demo3.launch() |