File size: 3,069 Bytes
a83f80b 509d266 6671a55 81eed54 8404815 509d266 6671a55 a83f80b 9660558 7c020ac 9660558 509d266 fe7c35d 509d266 9660558 509d266 81eed54 509d266 fe7c35d 81eed54 fe7c35d 81eed54 fe7c35d 81eed54 fe7c35d 509d266 fe7c35d 509d266 fe7c35d 509d266 81eed54 509d266 81eed54 509d266 81eed54 fe7c35d 509d266 1acabbc 509d266 837f208 81eed54 7c020ac fe7c35d 509d266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import random
import numpy as np
import pandas as pd
import torch
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
title = "Movie Review Score Discriminator"
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. You can choose between the Korean version and the English version."
def tokenized_data(tokenizer, inputs):
return tokenizer.batch_encode_plus(
[inputs],
return_tensors="pt",
padding="max_length",
max_length=64,
truncation=True)
examples = []
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
random.seed(100)
for i in range(2):
idx = random.randint(0, 50)
examples.append(['Eng', df.iloc[idx, 0]])
examples.append(['Kor', df.iloc[idx, 1]])
eng_model_name = "roberta-base"
eng_step = 1900
eng_tokenizer = AutoTokenizer.from_pretrained(eng_model_name)
eng_file_name = "{}-{}.pt".format(eng_model_name, eng_step)
eng_state_dict = torch.load(eng_file_name)
eng_model = AutoModelForSequenceClassification.from_pretrained(
eng_model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=eng_state_dict
)
kor_model_name = "klue/roberta-small"
kor_step = 2400
kor_tokenizer = AutoTokenizer.from_pretrained(kor_model_name)
kor_file_name = "{}-{}.pt".format(kor_model_name.replace('/', '_'), kor_step)
kor_state_dict = torch.load(kor_file_name)
kor_model = AutoModelForSequenceClassification.from_pretrained(
kor_model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=kor_state_dict
)
def builder(lang, text):
if lang == 'Eng':
model = eng_model
tokenizer = eng_tokenizer
else:
model = kor_model
tokenizer = kor_tokenizer
inputs = tokenized_data(tokenizer, text)
model.eval()
with torch.no_grad():
logits = model(input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask']).logits
m = torch.nn.Softmax(dim=1)
output = m(logits)
# print(logits, output)
prediction = torch.argmax(logits, axis=1)
return {id2label[1]: output[0][1].item(), id2label[0]: output[0][0].item()}
return id2label[prediction.item()]
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Eng', 'Kor']), "text"],
# outputs=gr.Label(num_top_classes=2),
outputs='label',
title=title, description=description, examples=examples)
# demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text",
# title=title, theme="peach",
# allow_flagging="auto",
# description=description, examples=examples)
output = []
if __name__ == "__main__":
# print(examples)
demo.launch()
# demo3.launch() |