Spark-TTS-0.5B / sparktts /modules /fsq /finite_scalar_quantization.py
mrfakename's picture
Upload 43 files
d93aca0 verified
raw
history blame
7.5 kB
"""
Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
Code adapted from Jax version in Appendix A.1
"""
from __future__ import annotations
from functools import wraps, partial
from contextlib import nullcontext
from typing import List, Tuple
import torch
import torch.nn as nn
from torch.nn import Module
from torch import Tensor, int32
from torch.amp import autocast
from einops import rearrange, pack, unpack
# helper functions
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg
return None
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# tensor helpers
def round_ste(z: Tensor) -> Tensor:
"""Round with straight through gradients."""
zhat = z.round()
return z + (zhat - z).detach()
# main class
class FSQ(Module):
def __init__(
self,
levels: List[int],
dim: int | None = None,
num_codebooks=1,
keep_num_codebooks_dim: bool | None = None,
scale: float | None = None,
allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
channel_first: bool = False,
projection_has_bias: bool = True,
return_indices=True,
force_quantization_f32=True,
):
super().__init__()
_levels = torch.tensor(levels, dtype=int32)
self.register_buffer("_levels", _levels, persistent=False)
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
self.register_buffer("_basis", _basis, persistent=False)
self.scale = scale
codebook_dim = len(levels)
self.codebook_dim = codebook_dim
effective_codebook_dim = codebook_dim * num_codebooks
self.num_codebooks = num_codebooks
self.effective_codebook_dim = effective_codebook_dim
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
self.dim = default(dim, len(_levels) * num_codebooks)
self.channel_first = channel_first
has_projections = self.dim != effective_codebook_dim
self.project_in = (
nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias)
if has_projections
else nn.Identity()
)
self.project_out = (
nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias)
if has_projections
else nn.Identity()
)
self.has_projections = has_projections
self.return_indices = return_indices
if return_indices:
self.codebook_size = self._levels.prod().item()
implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
self.register_buffer(
"implicit_codebook", implicit_codebook, persistent=False
)
self.allowed_dtypes = allowed_dtypes
self.force_quantization_f32 = force_quantization_f32
def bound(self, z, eps: float = 1e-3):
"""Bound `z`, an array of shape (..., d)."""
half_l = (self._levels - 1) * (1 + eps) / 2
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).atanh()
return (z + shift).tanh() * half_l - offset
def quantize(self, z):
"""Quantizes z, returns quantized zhat, same shape as z."""
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized):
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat):
half_width = self._levels // 2
return (zhat - half_width) / half_width
def _indices_to_codes(self, indices):
level_indices = self.indices_to_level_indices(indices)
codes = self._scale_and_shift_inverse(level_indices)
return codes
def codes_to_indices(self, zhat):
"""Converts a `code` to an index in the codebook."""
assert zhat.shape[-1] == self.codebook_dim
zhat = self._scale_and_shift(zhat)
return (zhat * self._basis).sum(dim=-1).to(int32)
def indices_to_level_indices(self, indices):
"""Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings"""
indices = rearrange(indices, "... -> ... 1")
codes_non_centered = (indices // self._basis) % self._levels
return codes_non_centered
def indices_to_codes(self, indices):
"""Inverse of `codes_to_indices`."""
assert exists(indices)
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
codes = self._indices_to_codes(indices)
if self.keep_num_codebooks_dim:
codes = rearrange(codes, "... c d -> ... (c d)")
codes = self.project_out(codes)
if is_img_or_video or self.channel_first:
codes = rearrange(codes, "b ... d -> b d ...")
return codes
def forward(self, z):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension
c - number of codebook dim
"""
is_img_or_video = z.ndim >= 4
need_move_channel_last = is_img_or_video or self.channel_first
# standardize image or video into (batch, seq, dimension)
if need_move_channel_last:
z = rearrange(z, "b d ... -> b ... d")
z, ps = pack_one(z, "b * d")
assert (
z.shape[-1] == self.dim
), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
z = self.project_in(z)
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
# whether to force quantization step to be full precision or not
force_f32 = self.force_quantization_f32
quantization_context = (
partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext
)
with quantization_context():
orig_dtype = z.dtype
if force_f32 and orig_dtype not in self.allowed_dtypes:
z = z.float()
codes = self.quantize(z)
# returning indices could be optional
indices = None
if self.return_indices:
indices = self.codes_to_indices(codes)
codes = rearrange(codes, "b n c d -> b n (c d)")
codes = codes.type(orig_dtype)
# project out
out = self.project_out(codes)
# reconstitute image or video dimensions
if need_move_channel_last:
out = unpack_one(out, ps, "b * d")
out = rearrange(out, "b ... d -> b d ...")
indices = maybe(unpack_one)(indices, ps, "b * c")
if not self.keep_num_codebooks_dim and self.return_indices:
indices = maybe(rearrange)(indices, "... 1 -> ...")
# return quantized output and indices
return out, indices