File size: 1,995 Bytes
c15294b
 
 
 
d212df3
 
c15294b
27151df
e9207f1
 
 
 
 
c15294b
27151df
 
d212df3
27151df
d212df3
 
 
 
 
 
 
 
 
c15294b
 
e9207f1
 
 
 
 
 
 
 
27151df
 
e9207f1
 
c15294b
27151df
d212df3
 
27151df
c15294b
 
d212df3
27151df
e9207f1
d212df3
27151df
c15294b
 
e9207f1
c15294b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr
from transformers import AutoModel, AutoProcessor
from PIL import Image
import torch
import requests
from io import BytesIO

# Load model and processor from Hugging Face
try:
    model = AutoModel.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
    processor = AutoProcessor.from_pretrained("zxhezexin/openlrm-mix-large-1.1")
except Exception as e:
    print(f"Error loading model or processor: {e}")

# Example image URL (replace this with a suitable example)
example_image_url = "https://huggingface.co/datasets/nateraw/image-folder/resolve/main/example_1.png"

# Function to load example image from URL
def load_example_image():
    try:
        response = requests.get(example_image_url)
        image = Image.open(BytesIO(response.content))
        return image
    except Exception as e:
        print(f"Error loading example image: {e}")
        return None

# Define function to generate 3D output from 2D image
def image_to_3d(image):
    try:
        # Preprocess the input image
        inputs = processor(images=image, return_tensors="pt")
        
        # Run inference
        with torch.no_grad():
            outputs = model(**inputs)
        
        # Placeholder return, replace this with actual 3D visualization logic
        return "3D model generated from input image!"  
    except Exception as e:
        return f"Error during inference: {str(e)}"

# Load the example image for the Gradio interface
example_image = load_example_image()

# Gradio interface setup
interface = gr.Interface(
    fn=image_to_3d,
    inputs=gr.Image(type="pil", label="Upload an Image or use Example"),
    outputs="text",  # Placeholder output (replace with 3D rendering if needed)
    title="OpenLRM Mix-Large 1.1 - Image to 3D",
    description="Upload an image to generate a 3D model using OpenLRM Mix-Large 1.1.",
    examples=[[example_image]] if example_image else None  # Include the example image if loaded
)

# Launch the Gradio interface
interface.launch()