Spaces:
Running
Running
# RAG_Library_2.py | |
# Description: This script contains the main RAG pipeline function and related functions for the RAG pipeline. | |
# | |
# Import necessary modules and functions | |
import configparser | |
import logging | |
import os | |
import time | |
from typing import Dict, Any, List, Optional | |
from App_Function_Libraries.DB.Character_Chat_DB import get_character_chats, perform_full_text_search_chat, \ | |
fetch_keywords_for_chats, search_character_chat, search_character_cards, fetch_character_ids_by_keywords | |
from App_Function_Libraries.DB.RAG_QA_Chat_DB import search_rag_chat, search_rag_notes | |
# | |
# Local Imports | |
from App_Function_Libraries.RAG.ChromaDB_Library import process_and_store_content, vector_search, chroma_client | |
from App_Function_Libraries.RAG.RAG_Persona_Chat import perform_vector_search_chat | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_custom_openai | |
from App_Function_Libraries.Web_Scraping.Article_Extractor_Lib import scrape_article | |
from App_Function_Libraries.DB.DB_Manager import fetch_keywords_for_media, search_media_db, get_notes_by_keywords, \ | |
search_conversations_by_keywords | |
from App_Function_Libraries.Utils.Utils import load_comprehensive_config | |
from App_Function_Libraries.Metrics.metrics_logger import log_counter, log_histogram | |
# | |
# 3rd-Party Imports | |
import openai | |
from flashrank import Ranker, RerankRequest | |
# | |
######################################################################################################################## | |
# | |
# Functions: | |
# Initialize OpenAI client (adjust this based on your API key management) | |
openai.api_key = "your-openai-api-key" | |
# Get the directory of the current script | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
# Construct the path to the config file | |
config_path = os.path.join(current_dir, 'Config_Files', 'config.txt') | |
# Read the config file | |
config = configparser.ConfigParser() | |
# Read the configuration file | |
config.read('config.txt') | |
search_functions = { | |
"Media DB": search_media_db, | |
"RAG Chat": search_rag_chat, | |
"RAG Notes": search_rag_notes, | |
"Character Chat": search_character_chat, | |
"Character Cards": search_character_cards | |
} | |
# RAG pipeline function for web scraping | |
# def rag_web_scraping_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]: | |
# try: | |
# # Extract content | |
# try: | |
# article_data = scrape_article(url) | |
# content = article_data['content'] | |
# title = article_data['title'] | |
# except Exception as e: | |
# logging.error(f"Error scraping article: {str(e)}") | |
# return {"error": "Failed to scrape article", "details": str(e)} | |
# | |
# # Store the article in the database and get the media_id | |
# try: | |
# media_id = add_media_to_database(url, title, 'article', content) | |
# except Exception as e: | |
# logging.error(f"Error adding article to database: {str(e)}") | |
# return {"error": "Failed to store article in database", "details": str(e)} | |
# | |
# # Process and store content | |
# collection_name = f"article_{media_id}" | |
# try: | |
# # Assuming you have a database object available, let's call it 'db' | |
# db = get_database_connection() | |
# | |
# process_and_store_content( | |
# database=db, | |
# content=content, | |
# collection_name=collection_name, | |
# media_id=media_id, | |
# file_name=title, | |
# create_embeddings=True, | |
# create_contextualized=True, | |
# api_name=api_choice | |
# ) | |
# except Exception as e: | |
# logging.error(f"Error processing and storing content: {str(e)}") | |
# return {"error": "Failed to process and store content", "details": str(e)} | |
# | |
# # Perform searches | |
# try: | |
# vector_results = vector_search(collection_name, query, k=5) | |
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5) | |
# except Exception as e: | |
# logging.error(f"Error performing searches: {str(e)}") | |
# return {"error": "Failed to perform searches", "details": str(e)} | |
# | |
# # Combine results with error handling for missing 'content' key | |
# all_results = [] | |
# for result in vector_results + fts_results: | |
# if isinstance(result, dict) and 'content' in result: | |
# all_results.append(result['content']) | |
# else: | |
# logging.warning(f"Unexpected result format: {result}") | |
# all_results.append(str(result)) | |
# | |
# context = "\n".join(all_results) | |
# | |
# # Generate answer using the selected API | |
# try: | |
# answer = generate_answer(api_choice, context, query) | |
# except Exception as e: | |
# logging.error(f"Error generating answer: {str(e)}") | |
# return {"error": "Failed to generate answer", "details": str(e)} | |
# | |
# return { | |
# "answer": answer, | |
# "context": context | |
# } | |
# | |
# except Exception as e: | |
# logging.error(f"Unexpected error in rag_pipeline: {str(e)}") | |
# return {"error": "An unexpected error occurred", "details": str(e)} | |
# RAG Search with keyword filtering | |
# FIXME - Update each called function to support modifiable top-k results | |
def enhanced_rag_pipeline( | |
query: str, | |
api_choice: str, | |
keywords: Optional[str] = None, | |
fts_top_k: int = 10, | |
apply_re_ranking: bool = True, | |
database_types: List[str] = ["Media DB"] | |
) -> Dict[str, Any]: | |
""" | |
Perform full text search across specified database type. | |
Args: | |
query: Search query string | |
api_choice: API to use for generating the response | |
keywords: Optional list of media IDs to filter results | |
fts_top_k: Maximum number of results to return | |
apply_re_ranking: Whether to apply re-ranking to results | |
database_types: Type of database to search | |
Returns: | |
Dictionary containing search results with content | |
""" | |
log_counter("enhanced_rag_pipeline_attempt", labels={"api_choice": api_choice}) | |
start_time = time.time() | |
try: | |
# Load embedding provider from config, or fallback to 'openai' | |
embedding_provider = config.get('Embeddings', 'provider', fallback='openai') | |
logging.debug(f"Using embedding provider: {embedding_provider}") | |
# Initialize relevant IDs dictionary | |
relevant_ids: Dict[str, Optional[List[str]]] = {} | |
# Process keywords if provided | |
if keywords: | |
keyword_list = [k.strip().lower() for k in keywords.split(',')] | |
logging.debug(f"enhanced_rag_pipeline - Keywords: {keyword_list}") | |
try: | |
for db_type in database_types: | |
if db_type == "Media DB": | |
media_ids = fetch_relevant_media_ids(keyword_list) | |
relevant_ids[db_type] = [str(id_) for id_ in media_ids] | |
elif db_type == "RAG Chat": | |
conversations, _, _ = search_conversations_by_keywords(keywords=keyword_list) | |
relevant_ids[db_type] = [str(conv['conversation_id']) for conv in conversations] | |
elif db_type == "RAG Notes": | |
notes, _, _ = get_notes_by_keywords(keyword_list) | |
relevant_ids[db_type] = [str(note_id) for note_id, _, _, _ in notes] | |
elif db_type == "Character Chat": | |
relevant_ids[db_type] = [str(id_) for id_ in fetch_keywords_for_chats(keyword_list)] | |
elif db_type == "Character Cards": | |
relevant_ids[db_type] = [str(id_) for id_ in fetch_character_ids_by_keywords(keyword_list)] | |
else: | |
logging.error(f"Unsupported database type: {db_type}") | |
logging.debug(f"enhanced_rag_pipeline - {db_type} relevant IDs: {relevant_ids[db_type]}") | |
except Exception as e: | |
logging.error(f"Error fetching relevant IDs: {str(e)}") | |
relevant_ids = {db_type: None for db_type in database_types} | |
else: | |
relevant_ids = {db_type: None for db_type in database_types} | |
# Perform vector search | |
vector_results = [] | |
for db_type in database_types: | |
try: | |
db_relevant_ids = relevant_ids.get(db_type) | |
results = perform_vector_search(query, db_relevant_ids, top_k=fts_top_k) | |
vector_results.extend(results) | |
logging.debug(f"\nenhanced_rag_pipeline - Vector search results for {db_type}: {results}") | |
except Exception as e: | |
logging.error(f"Error performing vector search on {db_type}: {str(e)}") | |
# Perform vector search | |
# FIXME | |
#vector_results = perform_vector_search(query, relevant_media_ids) | |
#ogging.debug(f"\n\nenhanced_rag_pipeline - Vector search results: {vector_results}") | |
# Perform full-text search | |
#v1 | |
#fts_results = perform_full_text_search(query, database_type, relevant_media_ids, fts_top_k) | |
# v2 | |
# Perform full-text search across specified databases | |
fts_results = [] | |
for db_type in database_types: | |
try: | |
db_relevant_ids = relevant_ids.get(db_type) | |
db_results = perform_full_text_search(query, db_type, db_relevant_ids, fts_top_k) | |
fts_results.extend(db_results) | |
logging.debug(f"enhanced_rag_pipeline - FTS results for {db_type}: {db_results}") | |
except Exception as e: | |
logging.error(f"Error performing full-text search on {db_type}: {str(e)}") | |
#logging.debug("\n\nenhanced_rag_pipeline - Full-text search results:") | |
logging.debug( | |
"\n\nenhanced_rag_pipeline - Full-text search results:\n" + "\n".join( | |
[str(item) for item in fts_results]) + "\n" | |
) | |
# Combine results | |
all_results = vector_results + fts_results | |
# FIXME - specify model + add param to modify at call time | |
# You can specify a model if necessary, e.g., model_name="ms-marco-MiniLM-L-12-v2" | |
# Apply re-ranking if enabled and results exist | |
if apply_re_ranking and all_results: | |
logging.debug(f"\nenhanced_rag_pipeline - Applying Re-Ranking") | |
if all_results: | |
ranker = Ranker() | |
# Prepare passages for re-ranking | |
passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)] | |
rerank_request = RerankRequest(query=query, passages=passages) | |
# Rerank the results | |
reranked_results = ranker.rerank(rerank_request) | |
# Sort results based on the re-ranking score | |
reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True) | |
# Log reranked results | |
logging.debug(f"\n\nenhanced_rag_pipeline - Reranked results: {reranked_results}") | |
# Update all_results based on reranking | |
all_results = [all_results[result['id']] for result in reranked_results] | |
# Extract content from results (top fts_top_k by default) | |
context = "\n".join([result['content'] for result in all_results[:fts_top_k]]) | |
#logging.debug(f"Context length: {len(context)}") | |
logging.debug(f"Context: {context[:200]}") | |
# Generate answer using the selected API | |
answer = generate_answer(api_choice, context, query) | |
if not all_results: | |
logging.info(f"No results found. Query: {query}, Keywords: {keywords}") | |
return { | |
"answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer, | |
"context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query | |
} | |
# Log metrics | |
pipeline_duration = time.time() - start_time | |
log_histogram("enhanced_rag_pipeline_duration", pipeline_duration, labels={"api_choice": api_choice}) | |
log_counter("enhanced_rag_pipeline_success", labels={"api_choice": api_choice}) | |
return { | |
"answer": answer, | |
"context": context | |
} | |
except Exception as e: | |
log_counter("enhanced_rag_pipeline_error", labels={"api_choice": api_choice, "error": str(e)}) | |
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}") | |
logging.error(f"Error in enhanced_rag_pipeline: {str(e)}") | |
return { | |
"answer": "An error occurred while processing your request.", | |
"context": "" | |
} | |
# Need to write a test for this function FIXME | |
def generate_answer(api_choice: str, context: str, query: str) -> str: | |
# Metrics | |
log_counter("generate_answer_attempt", labels={"api_choice": api_choice}) | |
start_time = time.time() | |
logging.debug("Entering generate_answer function") | |
config = load_comprehensive_config() | |
logging.debug(f"Config sections: {config.sections()}") | |
prompt = f"Context: {context}\n\nQuestion: {query}" | |
try: | |
if api_choice == "OpenAI": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openai | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_openai(config['API']['openai_api_key'], prompt, "") | |
elif api_choice == "Anthropic": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_anthropic | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "") | |
elif api_choice == "Cohere": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_cohere | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "") | |
elif api_choice == "Groq": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_groq | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_groq(config['API']['groq_api_key'], prompt, "") | |
elif api_choice == "OpenRouter": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_openrouter | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "") | |
elif api_choice == "HuggingFace": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_huggingface | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "") | |
elif api_choice == "DeepSeek": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_deepseek | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "") | |
elif api_choice == "Mistral": | |
from App_Function_Libraries.Summarization.Summarization_General_Lib import summarize_with_mistral | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "") | |
# Local LLM APIs | |
elif api_choice == "Local-LLM": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_local_llm | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
# FIXME | |
return summarize_with_local_llm(config['Local-API']['local_llm_path'], prompt, "") | |
elif api_choice == "Llama.cpp": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_llama | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_llama(prompt, "", config['Local-API']['llama_api_key'], None, None) | |
elif api_choice == "Kobold": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_kobold | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_kobold(prompt, config['Local-API']['kobold_api_key'], "", system_message=None, temp=None) | |
elif api_choice == "Ooba": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_oobabooga | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_oobabooga(prompt, config['Local-API']['ooba_api_key'], custom_prompt="", system_message=None, temp=None) | |
elif api_choice == "TabbyAPI": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_tabbyapi | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_tabbyapi(prompt, None, None, None, None, ) | |
elif api_choice == "vLLM": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_vllm | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_vllm(prompt, "", config['Local-API']['vllm_api_key'], None, None) | |
elif api_choice.lower() == "ollama": | |
from App_Function_Libraries.Summarization.Local_Summarization_Lib import summarize_with_ollama | |
answer_generation_duration = time.time() - start_time | |
log_histogram("generate_answer_duration", answer_generation_duration, labels={"api_choice": api_choice}) | |
log_counter("generate_answer_success", labels={"api_choice": api_choice}) | |
return summarize_with_ollama(prompt, "", config['Local-API']['ollama_api_IP'], config['Local-API']['ollama_api_key'], None, None, None) | |
elif api_choice.lower() == "custom_openai_api": | |
logging.debug(f"RAG Answer Gen: Trying with Custom_OpenAI API") | |
summary = summarize_with_custom_openai(prompt, "", config['API']['custom_openai_api_key'], None, | |
None) | |
else: | |
log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str()}) | |
raise ValueError(f"Unsupported API choice: {api_choice}") | |
except Exception as e: | |
log_counter("generate_answer_error", labels={"api_choice": api_choice, "error": str(e)}) | |
logging.error(f"Error in generate_answer: {str(e)}") | |
return "An error occurred while generating the answer." | |
def perform_vector_search(query: str, relevant_media_ids: List[str] = None, top_k=10) -> List[Dict[str, Any]]: | |
log_counter("perform_vector_search_attempt") | |
start_time = time.time() | |
all_collections = chroma_client.list_collections() | |
vector_results = [] | |
try: | |
for collection in all_collections: | |
collection_results = vector_search(collection.name, query, k=top_k) | |
if not collection_results: | |
continue # Skip empty results | |
filtered_results = [ | |
result for result in collection_results | |
if relevant_media_ids is None or result['metadata'].get('media_id') in relevant_media_ids | |
] | |
vector_results.extend(filtered_results) | |
search_duration = time.time() - start_time | |
log_histogram("perform_vector_search_duration", search_duration) | |
log_counter("perform_vector_search_success", labels={"result_count": len(vector_results)}) | |
return vector_results | |
except Exception as e: | |
log_counter("perform_vector_search_error", labels={"error": str(e)}) | |
logging.error(f"Error in perform_vector_search: {str(e)}") | |
raise | |
# V2 | |
def perform_full_text_search(query: str, database_type: str, relevant_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]: | |
""" | |
Perform full-text search on a specified database type. | |
Args: | |
query: Search query string | |
database_type: Type of database to search ("Media DB", "RAG Chat", "RAG Notes", "Character Chat", "Character Cards") | |
relevant_ids: Optional list of media IDs to filter results | |
fts_top_k: Maximum number of results to return | |
Returns: | |
List of search results with content and metadata | |
""" | |
log_counter("perform_full_text_search_attempt", labels={"database_type": database_type}) | |
start_time = time.time() | |
try: | |
# Set default for fts_top_k | |
if fts_top_k is None: | |
fts_top_k = 10 | |
# Call appropriate search function based on database type | |
if database_type not in search_functions: | |
raise ValueError(f"Unsupported database type: {database_type}") | |
# Call the appropriate search function | |
results = search_functions[database_type](query, fts_top_k, relevant_ids) | |
search_duration = time.time() - start_time | |
log_histogram("perform_full_text_search_duration", search_duration, | |
labels={"database_type": database_type}) | |
log_counter("perform_full_text_search_success", | |
labels={"database_type": database_type, "result_count": len(results)}) | |
return results | |
except Exception as e: | |
log_counter("perform_full_text_search_error", | |
labels={"database_type": database_type, "error": str(e)}) | |
logging.error(f"Error in perform_full_text_search ({database_type}): {str(e)}") | |
raise | |
# v1 | |
# def perform_full_text_search(query: str, relevant_media_ids: List[str] = None, fts_top_k=None) -> List[Dict[str, Any]]: | |
# log_counter("perform_full_text_search_attempt") | |
# start_time = time.time() | |
# try: | |
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=fts_top_k or 10) | |
# filtered_fts_results = [ | |
# { | |
# "content": result['content'], | |
# "metadata": {"media_id": result['id']} | |
# } | |
# for result in fts_results | |
# if relevant_media_ids is None or result['id'] in relevant_media_ids | |
# ] | |
# search_duration = time.time() - start_time | |
# log_histogram("perform_full_text_search_duration", search_duration) | |
# log_counter("perform_full_text_search_success", labels={"result_count": len(filtered_fts_results)}) | |
# return filtered_fts_results | |
# except Exception as e: | |
# log_counter("perform_full_text_search_error", labels={"error": str(e)}) | |
# logging.error(f"Error in perform_full_text_search: {str(e)}") | |
# raise | |
def fetch_relevant_media_ids(keywords: List[str], top_k=10) -> List[int]: | |
log_counter("fetch_relevant_media_ids_attempt", labels={"keyword_count": len(keywords)}) | |
start_time = time.time() | |
relevant_ids = set() | |
for keyword in keywords: | |
try: | |
media_ids = fetch_keywords_for_media(keyword) | |
relevant_ids.update(media_ids) | |
except Exception as e: | |
log_counter("fetch_relevant_media_ids_error", labels={"error": str(e)}) | |
logging.error(f"Error fetching relevant media IDs for keyword '{keyword}': {str(e)}") | |
# Continue processing other keywords | |
fetch_duration = time.time() - start_time | |
log_histogram("fetch_relevant_media_ids_duration", fetch_duration) | |
log_counter("fetch_relevant_media_ids_success", labels={"result_count": len(relevant_ids)}) | |
return list(relevant_ids) | |
def filter_results_by_keywords(results: List[Dict[str, Any]], keywords: List[str]) -> List[Dict[str, Any]]: | |
log_counter("filter_results_by_keywords_attempt", labels={"result_count": len(results), "keyword_count": len(keywords)}) | |
start_time = time.time() | |
if not keywords: | |
return results | |
filtered_results = [] | |
for result in results: | |
try: | |
metadata = result.get('metadata', {}) | |
if metadata is None: | |
logging.warning(f"No metadata found for result: {result}") | |
continue | |
if not isinstance(metadata, dict): | |
logging.warning(f"Unexpected metadata type: {type(metadata)}. Expected dict.") | |
continue | |
media_id = metadata.get('media_id') | |
if media_id is None: | |
logging.warning(f"No media_id found in metadata: {metadata}") | |
continue | |
media_keywords = fetch_keywords_for_media(media_id) | |
if any(keyword.lower() in [mk.lower() for mk in media_keywords] for keyword in keywords): | |
filtered_results.append(result) | |
except Exception as e: | |
logging.error(f"Error processing result: {result}. Error: {str(e)}") | |
filter_duration = time.time() - start_time | |
log_histogram("filter_results_by_keywords_duration", filter_duration) | |
log_counter("filter_results_by_keywords_success", labels={"filtered_count": len(filtered_results)}) | |
return filtered_results | |
# FIXME: to be implememted | |
def extract_media_id_from_result(result: str) -> Optional[int]: | |
# Implement this function based on how you store the media_id in your results | |
# For example, if it's stored at the beginning of each result: | |
try: | |
return int(result.split('_')[0]) | |
except (IndexError, ValueError): | |
logging.error(f"Failed to extract media_id from result: {result}") | |
return None | |
# | |
# | |
######################################################################################################################## | |
############################################################################################################ | |
# | |
# Chat RAG | |
def enhanced_rag_pipeline_chat(query: str, api_choice: str, character_id: int, keywords: Optional[str] = None) -> Dict[str, Any]: | |
""" | |
Enhanced RAG pipeline tailored for the Character Chat tab. | |
Args: | |
query (str): The user's input query. | |
api_choice (str): The API to use for generating the response. | |
character_id (int): The ID of the character being interacted with. | |
keywords (Optional[str]): Comma-separated keywords to filter search results. | |
Returns: | |
Dict[str, Any]: Contains the generated answer and the context used. | |
""" | |
log_counter("enhanced_rag_pipeline_chat_attempt", labels={"api_choice": api_choice, "character_id": character_id}) | |
start_time = time.time() | |
try: | |
# Load embedding provider from config, or fallback to 'openai' | |
embedding_provider = config.get('Embeddings', 'provider', fallback='openai') | |
logging.debug(f"Using embedding provider: {embedding_provider}") | |
# Process keywords if provided | |
keyword_list = [k.strip().lower() for k in keywords.split(',')] if keywords else [] | |
logging.debug(f"enhanced_rag_pipeline_chat - Keywords: {keyword_list}") | |
# Fetch relevant chat IDs based on character_id and keywords | |
if keyword_list: | |
relevant_chat_ids = fetch_keywords_for_chats(keyword_list) | |
else: | |
relevant_chat_ids = fetch_all_chat_ids(character_id) | |
logging.debug(f"enhanced_rag_pipeline_chat - Relevant chat IDs: {relevant_chat_ids}") | |
if not relevant_chat_ids: | |
logging.info(f"No chats found for the given keywords and character ID: {character_id}") | |
# Fallback to generating answer without context | |
answer = generate_answer(api_choice, "", query) | |
# Metrics | |
pipeline_duration = time.time() - start_time | |
log_histogram("enhanced_rag_pipeline_chat_duration", pipeline_duration, labels={"api_choice": api_choice}) | |
log_counter("enhanced_rag_pipeline_chat_success", | |
labels={"api_choice": api_choice, "character_id": character_id}) | |
return { | |
"answer": answer, | |
"context": "" | |
} | |
# Perform vector search within the relevant chats | |
vector_results = perform_vector_search_chat(query, relevant_chat_ids) | |
logging.debug(f"enhanced_rag_pipeline_chat - Vector search results: {vector_results}") | |
# Perform full-text search within the relevant chats | |
# FIXME - Update for DB Selection | |
fts_results = perform_full_text_search_chat(query, relevant_chat_ids) | |
logging.debug("enhanced_rag_pipeline_chat - Full-text search results:") | |
logging.debug("\n".join([str(item) for item in fts_results])) | |
# Combine results | |
all_results = vector_results + fts_results | |
apply_re_ranking = True | |
if apply_re_ranking: | |
logging.debug("enhanced_rag_pipeline_chat - Applying Re-Ranking") | |
ranker = Ranker() | |
# Prepare passages for re-ranking | |
passages = [{"id": i, "text": result['content']} for i, result in enumerate(all_results)] | |
rerank_request = RerankRequest(query=query, passages=passages) | |
# Rerank the results | |
reranked_results = ranker.rerank(rerank_request) | |
# Sort results based on the re-ranking score | |
reranked_results = sorted(reranked_results, key=lambda x: x['score'], reverse=True) | |
# Log reranked results | |
logging.debug(f"enhanced_rag_pipeline_chat - Reranked results: {reranked_results}") | |
# Update all_results based on reranking | |
all_results = [all_results[result['id']] for result in reranked_results] | |
# Extract context from top results (limit to top 10) | |
context = "\n".join([result['content'] for result in all_results[:10]]) | |
logging.debug(f"Context length: {len(context)}") | |
logging.debug(f"Context: {context[:200]}") # Log only the first 200 characters for brevity | |
# Generate answer using the selected API | |
answer = generate_answer(api_choice, context, query) | |
if not all_results: | |
logging.info(f"No results found. Query: {query}, Keywords: {keywords}") | |
return { | |
"answer": "No relevant information based on your query and keywords were found in the database. Your query has been directly passed to the LLM, and here is its answer: \n\n" + answer, | |
"context": "No relevant information based on your query and keywords were found in the database. The only context used was your query: \n\n" + query | |
} | |
return { | |
"answer": answer, | |
"context": context | |
} | |
except Exception as e: | |
log_counter("enhanced_rag_pipeline_chat_error", labels={"api_choice": api_choice, "character_id": character_id, "error": str(e)}) | |
logging.error(f"Error in enhanced_rag_pipeline_chat: {str(e)}") | |
return { | |
"answer": "An error occurred while processing your request.", | |
"context": "" | |
} | |
def fetch_relevant_chat_ids(character_id: int, keywords: List[str]) -> List[int]: | |
""" | |
Fetch chat IDs associated with a character and filtered by keywords. | |
Args: | |
character_id (int): The ID of the character. | |
keywords (List[str]): List of keywords to filter chats. | |
Returns: | |
List[int]: List of relevant chat IDs. | |
""" | |
log_counter("fetch_relevant_chat_ids_attempt", labels={"character_id": character_id, "keyword_count": len(keywords)}) | |
start_time = time.time() | |
relevant_ids = set() | |
try: | |
media_ids = fetch_keywords_for_chats(keywords) | |
fetch_duration = time.time() - start_time | |
log_histogram("fetch_relevant_chat_ids_duration", fetch_duration) | |
log_counter("fetch_relevant_chat_ids_success", | |
labels={"character_id": character_id, "result_count": len(relevant_ids)}) | |
relevant_ids.update(media_ids) | |
return list(relevant_ids) | |
except Exception as e: | |
log_counter("fetch_relevant_chat_ids_error", labels={"character_id": character_id, "error": str(e)}) | |
logging.error(f"Error fetching relevant chat IDs: {str(e)}") | |
return [] | |
def fetch_all_chat_ids(character_id: int) -> List[int]: | |
""" | |
Fetch all chat IDs associated with a specific character. | |
Args: | |
character_id (int): The ID of the character. | |
Returns: | |
List[int]: List of all chat IDs for the character. | |
""" | |
log_counter("fetch_all_chat_ids_attempt", labels={"character_id": character_id}) | |
start_time = time.time() | |
try: | |
chats = get_character_chats(character_id=character_id) | |
chat_ids = [chat['id'] for chat in chats] | |
fetch_duration = time.time() - start_time | |
log_histogram("fetch_all_chat_ids_duration", fetch_duration) | |
log_counter("fetch_all_chat_ids_success", labels={"character_id": character_id, "chat_count": len(chat_ids)}) | |
return chat_ids | |
except Exception as e: | |
log_counter("fetch_all_chat_ids_error", labels={"character_id": character_id, "error": str(e)}) | |
logging.error(f"Error fetching all chat IDs for character {character_id}: {str(e)}") | |
return [] | |
# | |
# End of Chat RAG | |
############################################################################################################ | |
# Function to preprocess and store all existing content in the database | |
# def preprocess_all_content(database, create_contextualized=True, api_name="gpt-3.5-turbo"): | |
# unprocessed_media = get_unprocessed_media() | |
# total_media = len(unprocessed_media) | |
# | |
# for index, row in enumerate(unprocessed_media, 1): | |
# media_id, content, media_type, file_name = row | |
# collection_name = f"{media_type}_{media_id}" | |
# | |
# logger.info(f"Processing media {index} of {total_media}: ID {media_id}, Type {media_type}") | |
# | |
# try: | |
# process_and_store_content( | |
# database=database, | |
# content=content, | |
# collection_name=collection_name, | |
# media_id=media_id, | |
# file_name=file_name or f"{media_type}_{media_id}", | |
# create_embeddings=True, | |
# create_contextualized=create_contextualized, | |
# api_name=api_name | |
# ) | |
# | |
# # Mark the media as processed in the database | |
# mark_media_as_processed(database, media_id) | |
# | |
# logger.info(f"Successfully processed media ID {media_id}") | |
# except Exception as e: | |
# logger.error(f"Error processing media ID {media_id}: {str(e)}") | |
# | |
# logger.info("Finished preprocessing all unprocessed content") | |
############################################################################################################ | |
# | |
# ElasticSearch Retriever | |
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch | |
# | |
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query | |
# | |
# End of RAG_Library_2.py | |
############################################################################################################ | |