File size: 13,938 Bytes
4bbc150
6d3b05b
cd8f9a0
410193a
2636815
 
 
410193a
4bbc150
410193a
 
 
 
2636815
cd8f9a0
a9a94f3
4bbc150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8f9a0
2636815
b7d0d3d
2636815
 
b7d0d3d
 
 
 
 
 
 
 
 
 
cd8f9a0
2636815
 
410193a
 
 
2636815
cd8f9a0
410193a
104123a
 
410193a
2636815
6d3b05b
410193a
 
 
 
2636815
 
104123a
2636815
 
410193a
cd8f9a0
410193a
104123a
410193a
104123a
 
2636815
 
 
b51dfa4
2636815
 
410193a
cd8f9a0
2636815
 
 
cd8f9a0
 
 
2636815
 
cd8f9a0
2636815
 
cd8f9a0
2636815
 
 
 
 
cd8f9a0
2636815
 
 
 
410193a
2636815
 
 
cd8f9a0
410193a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8f9a0
 
410193a
 
2636815
410193a
 
2636815
 
 
 
 
 
b16790d
410193a
 
cd8f9a0
410193a
2636815
 
 
 
 
410193a
2636815
410193a
 
b16790d
 
2636815
 
 
 
 
410193a
2636815
 
b16790d
2636815
 
 
 
 
 
 
410193a
2636815
 
 
cd8f9a0
 
 
2636815
 
cd8f9a0
2636815
 
cd8f9a0
2636815
 
 
 
 
cd8f9a0
2636815
 
 
 
410193a
cd8f9a0
410193a
2636815
 
cd8f9a0
 
 
 
 
2636815
410193a
cd8f9a0
2636815
 
 
cd8f9a0
2636815
cd8f9a0
 
 
 
2636815
410193a
cd8f9a0
 
 
 
 
 
 
 
 
 
 
 
 
410193a
cd8f9a0
 
 
 
 
 
2636815
6d3b05b
 
 
cd8f9a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410193a
cd8f9a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410193a
cd8f9a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import torch

import gradio as gr
import yt_dlp as youtube_dl
import numpy as np
from datasets import Dataset, Audio
from scipy.io import wavfile
from huggingface_hub import whoami

from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import time
import demucs.api




def hello(profile: gr.OAuthProfile | None) -> str:
    if profile is None:
        return "I don't know you."
    return f"Hello {profile.name}"

def list_organizations(oauth_token: gr.OAuthToken | None) -> str:
    if oauth_token is None:
        return "Please log in to list organizations."
    org_names = [org["name"] for org in whoami(oauth_token.token)["orgs"]]
    return f"You belong to {', '.join(org_names)}."



MODEL_NAME = "openai/whisper-large-v3"
DEMUCS_MODEL_NAME = "htdemucs_ft"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

separator = demucs.api.Separator(model = DEMUCS_MODEL_NAME, )

def separate_vocal(path):
    origin, separated = separator.separate_audio_file(path)
    demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
    return path

    
def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, progress=gr.Progress()):
    if inputs_path is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    if dataset_name is None:
        raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")

    if oauth_token is None:
        gr.Warning("Make sure to click and login before using this demo.")
        return [["transcripts will appear here"]], ""
    
    total_step = 4
    current_step = 0
    
    current_step += 1
    progress((current_step, total_step), desc="Transcribe using Whisper.")

    sampling_rate, inputs = wavfile.read(inputs_path) 

    out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
    
    text = out["text"]
    
    current_step += 1
    progress((current_step, total_step), desc="Merge chunks.")
    chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate)

    current_step += 1
    progress((current_step, total_step), desc="Create dataset.")
    

    transcripts = []
    audios = []
    with tempfile.TemporaryDirectory() as tmpdirname:
        for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for)")):
            
            # TODO: make sure 1D or 2D?
            arr = chunk["audio"]
            path = os.path.join(tmpdirname, f"{i}.wav")
            wavfile.write(path, sampling_rate,  arr)
            
            if use_demucs == "separate-audio":
                # use demucs tp separate vocals
                print(f"Separating vocals #{i}")
                path = separate_vocal(path)
                
            audios.append(path)
            transcripts.append(chunk["text"])
            
        dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
        
        current_step += 1
        progress((current_step, total_step), desc="Push dataset.")
        dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
        
    return [[transcript] for transcript in transcripts], text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000,
                  progress=gr.Progress()):
    
    if yt_url is None:
        raise gr.Error("No youtube link submitted! Please put a working link.")
    if dataset_name is None:
        raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")

    total_step = 5
    current_step = 0
    
    html_embed_str = _return_yt_html_embed(yt_url)

    if oauth_token is None:
        gr.Warning("Make sure to click and login before using this demo.")
        return  html_embed_str, [["transcripts will appear here"]], ""
        
    current_step += 1
    progress((current_step, total_step), desc="Load video.")

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs_path = f.read()

        inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
        inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    
        current_step += 1
        progress((current_step, total_step), desc="Transcribe using Whisper.")
        out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
        
        text = out["text"]
            
        inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
    
    current_step += 1
    progress((current_step, total_step), desc="Merge chunks.")
    chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)

    current_step += 1
    progress((current_step, total_step), desc="Create dataset.")
    
    transcripts = []
    audios = []
    with tempfile.TemporaryDirectory() as tmpdirname:
        for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for).")):
            
            # TODO: make sure 1D or 2D?
            arr = chunk["audio"]
            path = os.path.join(tmpdirname, f"{i}.wav")
            wavfile.write(path, dataset_sampling_rate,  arr)
            
            if use_demucs == "separate-audio":
                # use demucs tp separate vocals
                print(f"Separating vocals #{i}")
                path = separate_vocal(path)
                
            audios.append(path)
            transcripts.append(chunk["text"])
            
        dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
        
        current_step += 1
        progress((current_step, total_step), desc="Push dataset.")
        dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
        

    return html_embed_str, [[transcript] for transcript in transcripts], text


def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate,  stop_chars = ".!:;?", min_duration = 5):
    # merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
    # return list of dictionnaries (text, audio)
    # min duration is in seconds
    min_duration = int(min_duration * sampling_rate)

    
    new_chunks = []
    while chunks:
        current_chunk = chunks.pop(0)
        
        begin, end = current_chunk["timestamp"]
        begin, end = int(begin*sampling_rate), int(end*sampling_rate)
        
        current_dur = end-begin
        
        text = current_chunk["text"]
        
            
        chunk_to_concat = [audio_array[begin:end]]
        while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
            ch = chunks.pop(0)
            begin, end = ch["timestamp"]
            begin, end = int(begin*sampling_rate), int(end*sampling_rate)
            current_dur += end-begin
            
            text = "".join([text, ch["text"]])
            
            # TODO: add silence ?
            chunk_to_concat.append(audio_array[begin:end])
            

        new_chunks.append({
            "text": text.strip(),
            "audio": np.concatenate(chunk_to_concat),
        })
        print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
                
    return new_chunks
    
    

css = """
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Row():
        gr.LoginButton()
        gr.LogoutButton()
        
    with gr.Tab("YouTube"):
        gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro")
        gr.Markdown(        
    "This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
    f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
    " of arbitrary length. It then merge chunks of audio and push it to the hub."
    )
        with gr.Row():
            with gr.Column():
                audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
                task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
                cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
                textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
                
                with gr.Row():
                    clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
                    submit_youtube = gr.Button("Submit")
                
            with gr.Column():
                html_youtube = gr.HTML()
                dataset_youtube = gr.Dataset(label="Transcribed samples.",components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
                transcript_youtube = gr.Textbox(label="Transcription")
        
    with gr.Tab("Microphone or Audio file"):
        gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro")
        gr.Markdown(        
    "This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
    f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
    " of arbitrary length. It then merge chunks of audio and push it to the hub."
    )
        with gr.Row():
            with gr.Column():
                audio_file = gr.Audio(type="filepath")
                task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
                cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
                textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
                
                with gr.Row():
                    clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
                    submit_file = gr.Button("Submit")
                
            with gr.Column():
                dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
                transcript_file = gr.Textbox(label="Transcription")
                
                
    
    submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file])                
    submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, dataset_youtube, transcript_youtube])                
    
demo.launch(debug=True)