Spaces:
Configuration error
Configuration error
**News** | |
* `05/17/2021` To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at [here](https://github.com/zju3dv/neuralbody/blob/master/supplementary_material.md#results-of-other-methods-on-zju-mocap), including Neural Volumes, Multi-view Neural Human Rendering, and Deferred Neural Human Rendering. | |
* `05/13/2021` To make the following works easier compare with our model, we save our rendering results of ZJU-MoCap at [here](https://zjueducn-my.sharepoint.com/:u:/g/personal/pengsida_zju_edu_cn/Ea3VOUy204VAiVJ-V-OGd9YBxdhbtfpS-U6icD_rDq0mUQ?e=cAcylK) and write a [document](supplementary_material.md) that describes the training and test protocols. | |
* `05/12/2021` The code supports the test and visualization on unseen human poses. | |
* `05/12/2021` We update the ZJU-MoCap dataset with better fitted SMPL using [EasyMocap](https://github.com/zju3dv/EasyMocap). We also release a [website](https://zju3dv.github.io/zju_mocap/) for visualization. Please see [here](https://github.com/zju3dv/neuralbody#potential-problems-of-provided-smpl-parameters) for the usage of provided smpl parameters. | |
# Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans | |
### [Project Page](https://zju3dv.github.io/neuralbody) | [Video](https://www.youtube.com/watch?v=BPCAMeBCE-8) | [Paper](https://arxiv.org/pdf/2012.15838.pdf) | [Data](https://github.com/zju3dv/neuralbody/blob/master/INSTALL.md#zju-mocap-dataset) | |
![monocular](https://zju3dv.github.io/neuralbody/images/monocular.gif) | |
> [Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans](https://arxiv.org/pdf/2012.15838.pdf) | |
> Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, Xiaowei Zhou | |
> CVPR 2021 | |
Any questions or discussions are welcomed! | |
## Installation | |
Please see [INSTALL.md](INSTALL.md) for manual installation. | |
### Installation using docker | |
Please see [docker/README.md](docker/README.md). | |
Thanks to [Zhaoyi Wan](https://github.com/wanzysky) for providing the docker implementation. | |
## Run the code on the custom dataset | |
Please see [CUSTOM](tools/custom). | |
## Run the code on People-Snapshot | |
Please see [INSTALL.md](INSTALL.md) to download the dataset. | |
We provide the pretrained models at [here](https://zjueducn-my.sharepoint.com/:f:/g/personal/pengsida_zju_edu_cn/Enn43YWDHwBEg-XBqnetFYcBLr3cItZ0qUFU-oKUpDHKXw?e=FObjE9). | |
### Process People-Snapshot | |
We already provide some processed data. If you want to process more videos of People-Snapshot, you could use [tools/process_snapshot.py](tools/process_snapshot.py). | |
You can also visualize smpl parameters of People-Snapshot with [tools/vis_snapshot.py](tools/vis_snapshot.py). | |
### Visualization on People-Snapshot | |
Take the visualization on `female-3-casual` as an example. The command lines for visualization are recorded in [visualize.sh](visualize.sh). | |
1. Download the corresponding pretrained model and put it to `$ROOT/data/trained_model/if_nerf/female3c/latest.pth`. | |
2. Visualization: | |
* Visualize novel views of single frame | |
``` | |
python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_view True num_render_views 144 | |
``` | |
![monocular](https://zju3dv.github.io/neuralbody/images/monocular_render.gif) | |
* Visualize views of dynamic humans with fixed camera | |
``` | |
python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_pose True | |
``` | |
![monocular](https://zju3dv.github.io/neuralbody/images/monocular_perform.gif) | |
* Visualize mesh | |
``` | |
# generate meshes | |
python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_mesh True train.num_workers 0 | |
# visualize a specific mesh | |
python tools/render_mesh.py --exp_name female3c --dataset people_snapshot --mesh_ind 226 | |
``` | |
![monocular](https://zju3dv.github.io/neuralbody/images/monocular_mesh.gif) | |
3. The results of visualization are located at `$ROOT/data/render/female3c` and `$ROOT/data/perform/female3c`. | |
### Training on People-Snapshot | |
Take the training on `female-3-casual` as an example. The command lines for training are recorded in [train.sh](train.sh). | |
1. Train: | |
``` | |
# training | |
python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False | |
# distributed training | |
python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False gpus "0, 1, 2, 3" distributed True | |
``` | |
2. Train with white background: | |
``` | |
# training | |
python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False white_bkgd True | |
``` | |
3. Tensorboard: | |
``` | |
tensorboard --logdir data/record/if_nerf | |
``` | |
## Run the code on ZJU-MoCap | |
Please see [INSTALL.md](INSTALL.md) to download the dataset. | |
We provide the pretrained models at [here](https://zjueducn-my.sharepoint.com/:f:/g/personal/pengsida_zju_edu_cn/Enn43YWDHwBEg-XBqnetFYcBLr3cItZ0qUFU-oKUpDHKXw?e=FObjE9). | |
### Potential problems of provided smpl parameters | |
1. The newly fitted parameters locate in `new_params`. Currently, the released pretrained models are trained on previously fitted parameters, which locate in `params`. | |
2. The smpl parameters of ZJU-MoCap have different definition from the one of MPI's smplx. | |
* If you want to extract vertices from the provided smpl parameters, please use `zju_smpl/extract_vertices.py`. | |
* The reason that we use the current definition is described at [here](https://github.com/zju3dv/EasyMocap/blob/master/doc/02_output.md#attention-for-smplsmpl-x-users). | |
It is okay to train Neural Body with smpl parameters fitted by smplx. | |
### Test on ZJU-MoCap | |
The command lines for test are recorded in [test.sh](test.sh). | |
Take the test on `sequence 313` as an example. | |
1. Download the corresponding pretrained model and put it to `$ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth`. | |
2. Test on training human poses: | |
``` | |
python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 | |
``` | |
3. Test on unseen human poses: | |
``` | |
python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 test_novel_pose True | |
``` | |
### Visualization on ZJU-MoCap | |
Take the visualization on `sequence 313` as an example. The command lines for visualization are recorded in [visualize.sh](visualize.sh). | |
1. Download the corresponding pretrained model and put it to `$ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth`. | |
2. Visualization: | |
* Visualize novel views of single frame | |
``` | |
python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True | |
``` | |
![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_render_313.gif) | |
* Visualize novel views of single frame by rotating the SMPL model | |
``` | |
python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True num_render_views 100 | |
``` | |
![zju_mocap](https://zju3dv.github.io/neuralbody/images/rotate_smpl.gif) | |
* Visualize views of dynamic humans with fixed camera | |
``` | |
python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000 num_render_views 1 | |
``` | |
![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_perform_fixed_313.gif) | |
* Visualize views of dynamic humans with rotated camera | |
``` | |
python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000 | |
``` | |
![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_perform_313.gif) | |
* Visualize mesh | |
``` | |
# generate meshes | |
python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_mesh True train.num_workers 0 | |
# visualize a specific mesh | |
python tools/render_mesh.py --exp_name xyzc_313 --dataset zju_mocap --mesh_ind 0 | |
``` | |
![zju_mocap](https://zju3dv.github.io/neuralbody/images/zju_mocap_mesh.gif) | |
4. The results of visualization are located at `$ROOT/data/render/xyzc_313` and `$ROOT/data/perform/xyzc_313`. | |
### Training on ZJU-MoCap | |
Take the training on `sequence 313` as an example. The command lines for training are recorded in [train.sh](train.sh). | |
1. Train: | |
``` | |
# training | |
python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False | |
# distributed training | |
python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False gpus "0, 1, 2, 3" distributed True | |
``` | |
2. Train with white background: | |
``` | |
# training | |
python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False white_bkgd True | |
``` | |
3. Tensorboard: | |
``` | |
tensorboard --logdir data/record/if_nerf | |
``` | |
## Citation | |
If you find this code useful for your research, please use the following BibTeX entry. | |
``` | |
@inproceedings{peng2021neural, | |
title={Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans}, | |
author={Peng, Sida and Zhang, Yuanqing and Xu, Yinghao and Wang, Qianqian and Shuai, Qing and Bao, Hujun and Zhou, Xiaowei}, | |
booktitle={CVPR}, | |
year={2021} | |
} | |
``` | |