Spaces:
Configuration error
Configuration error
from torch.utils.data.sampler import Sampler | |
from torch.utils.data.sampler import BatchSampler | |
import numpy as np | |
import torch | |
import math | |
import torch.distributed as dist | |
from lib.config import cfg | |
class ImageSizeBatchSampler(Sampler): | |
def __init__(self, sampler, batch_size, drop_last, sampler_meta): | |
self.sampler = sampler | |
self.batch_size = batch_size | |
self.drop_last = drop_last | |
self.strategy = sampler_meta.strategy | |
self.hmin, self.wmin = sampler_meta.min_hw | |
self.hmax, self.wmax = sampler_meta.max_hw | |
self.divisor = 32 | |
if cfg.fix_random: | |
np.random.seed(0) | |
def generate_height_width(self): | |
if self.strategy == 'origin': | |
return -1, -1 | |
h = np.random.randint(self.hmin, self.hmax + 1) | |
w = np.random.randint(self.wmin, self.wmax + 1) | |
h = (h | (self.divisor - 1)) + 1 | |
w = (w | (self.divisor - 1)) + 1 | |
return h, w | |
def __iter__(self): | |
batch = [] | |
h, w = self.generate_height_width() | |
for idx in self.sampler: | |
batch.append((idx, h, w)) | |
if len(batch) == self.batch_size: | |
h, w = self.generate_height_width() | |
yield batch | |
batch = [] | |
if len(batch) > 0 and not self.drop_last: | |
yield batch | |
def __len__(self): | |
if self.drop_last: | |
return len(self.sampler) // self.batch_size | |
else: | |
return (len(self.sampler) + self.batch_size - 1) // self.batch_size | |
class IterationBasedBatchSampler(BatchSampler): | |
""" | |
Wraps a BatchSampler, resampling from it until | |
a specified number of iterations have been sampled | |
""" | |
def __init__(self, batch_sampler, num_iterations, start_iter=0): | |
self.batch_sampler = batch_sampler | |
self.sampler = self.batch_sampler.sampler | |
self.num_iterations = num_iterations | |
self.start_iter = start_iter | |
def __iter__(self): | |
iteration = self.start_iter | |
while iteration <= self.num_iterations: | |
for batch in self.batch_sampler: | |
iteration += 1 | |
if iteration > self.num_iterations: | |
break | |
yield batch | |
def __len__(self): | |
return self.num_iterations | |
class DistributedSampler(Sampler): | |
"""Sampler that restricts data loading to a subset of the dataset. | |
It is especially useful in conjunction with | |
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each | |
process can pass a DistributedSampler instance as a DataLoader sampler, | |
and load a subset of the original dataset that is exclusive to it. | |
.. note:: | |
Dataset is assumed to be of constant size. | |
Arguments: | |
dataset: Dataset used for sampling. | |
num_replicas (optional): Number of processes participating in | |
distributed training. | |
rank (optional): Rank of the current process within num_replicas. | |
""" | |
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): | |
if num_replicas is None: | |
if not dist.is_available(): | |
raise RuntimeError("Requires distributed package to be available") | |
num_replicas = dist.get_world_size() | |
if rank is None: | |
if not dist.is_available(): | |
raise RuntimeError("Requires distributed package to be available") | |
rank = dist.get_rank() | |
self.dataset = dataset | |
self.num_replicas = num_replicas | |
self.rank = rank | |
self.epoch = 0 | |
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) | |
self.total_size = self.num_samples * self.num_replicas | |
self.shuffle = shuffle | |
def __iter__(self): | |
if self.shuffle: | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() | |
else: | |
indices = torch.arange(len(self.dataset)).tolist() | |
# add extra samples to make it evenly divisible | |
indices += indices[: (self.total_size - len(indices))] | |
assert len(indices) == self.total_size | |
# subsample | |
offset = self.num_samples * self.rank | |
indices = indices[offset:offset+self.num_samples] | |
assert len(indices) == self.num_samples | |
return iter(indices) | |
def __len__(self): | |
return self.num_samples | |
def set_epoch(self, epoch): | |
self.epoch = epoch | |
class FrameSampler(Sampler): | |
"""Sampler certain frames for test | |
""" | |
def __init__(self, dataset): | |
inds = np.arange(0, len(dataset.ims)) | |
ni = len(dataset.ims) // dataset.num_cams | |
inds = inds.reshape(ni, -1)[::cfg.test.frame_sampler_interval] | |
self.inds = inds.ravel() | |
def __iter__(self): | |
return iter(self.inds) | |
def __len__(self): | |
return len(self.inds) | |