|
import gradio as gr |
|
import librosa |
|
import logging |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
|
|
from transformers import VitsModel, VitsTokenizer |
|
from transformers import WhisperForConditionalGeneration, WhisperProcessor |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
target_language = "french" |
|
|
|
whisper_model_name = "openai/whisper-base" |
|
whisper_processor = WhisperProcessor.from_pretrained(whisper_model_name) |
|
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name) |
|
decoder_ids = whisper_processor.get_decoder_prompt_ids(language=target_language, task="transcribe") |
|
|
|
|
|
model = VitsModel.from_pretrained("facebook/mms-tts-fra") |
|
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") |
|
|
|
|
|
|
|
|
|
def translate(audio): |
|
if isinstance(audio, str): |
|
|
|
audio = { |
|
"path": audio, |
|
"sampling_rate": 16_000, |
|
"array": librosa.load(audio, sr=16_000)[0] |
|
} |
|
elif audio["sampling_rate"] != 16_000: |
|
audio["array"] = librosa.resample(audio["array"], audio["sampling_rate"], 16_000) |
|
input_features = whisper_processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features |
|
predicted_ids = whisper_model.generate(input_features, forced_decoder_ids=decoder_ids) |
|
translated_text = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
return translated_text |
|
|
|
|
|
def synthesise(text): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(inputs["input_ids"]) |
|
speech = outputs["waveform"] |
|
return speech.cpu() |
|
|
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
logging.info(f"Translated Text: {translated_text}") |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's |
|
[SpeechT5 TTS](https://huggingface.co/preetam8/speecht5_finetuned_voxpopuli_fr) model for text-to-speech finetuned for french: |
|
|
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
examples=[["./example.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
logging.getLogger().setLevel(logging.INFO) |
|
demo.launch() |
|
|