File size: 34,739 Bytes
8c42108
b6816e1
 
3b0d426
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
53256c4
 
 
b6816e1
 
 
8b7e9f0
b6816e1
 
 
 
 
 
 
8b7e9f0
b6816e1
 
 
 
 
 
 
 
 
 
05fea77
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b7e9f0
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53256c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c42108
 
b6816e1
8c42108
 
b6816e1
53256c4
 
 
 
b6816e1
92254d3
650ccf5
4712226
b6816e1
11d8b13
650ccf5
53256c4
b6816e1
4712226
b6816e1
 
 
8c42108
11ecbac
 
 
 
 
 
b6816e1
 
92254d3
 
b6816e1
 
 
 
 
 
 
 
 
 
 
650ccf5
 
 
 
 
 
 
 
 
 
 
 
 
53256c4
 
 
 
 
 
 
 
 
 
 
 
 
11d8b13
 
11ecbac
 
 
8c42108
11ecbac
 
 
b6816e1
650ccf5
 
 
 
 
 
 
 
 
 
b6816e1
 
11ecbac
 
 
8c42108
11ecbac
 
 
b6816e1
 
 
 
 
8432c73
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
7d340b1
b6816e1
 
 
 
 
 
 
 
 
 
 
 
8432c73
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d340b1
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8432c73
 
 
 
 
 
 
 
 
 
 
 
 
b6816e1
 
8432c73
 
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c42108
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8432c73
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8432c73
b6816e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import spaces
from functools import partial
import os
from typing import Any, Dict, List, Tuple, Optional, Union

import gradio as gr
import spacy
from pyvis.network import Network
from spacy import displacy
from spacy.tokens import Doc, Span

from relik.common.utils import CONFIG_NAME, from_cache
from relik.inference.annotator import Relik
from relik.inference.serve.frontend.utils import get_random_color
from relik.retriever.pytorch_modules.model import GoldenRetriever
from relik.retriever.indexers.inmemory import InMemoryDocumentIndex
from relik.inference.data.objects import TaskType
from relik.retriever.pytorch_modules import RetrievedSample
from relik.retriever.indexers.document import Document, DocumentStore
from relik.retriever.indexers.base import BaseDocumentIndex

LOGO = """
<div style="text-align: center; display: flex; flex-direction: column; align-items: center;">
    <img src="https://github.com/SapienzaNLP/relik/blob/main/relik.png?raw=true" style="max-width: 850px; height: auto;"> 
</div>
"""

DESCRIPTION = """
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
    <a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a> &nbsp; &nbsp; 
    <a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a> &nbsp; &nbsp; 
    <a href="https://arxiv.org/abs/2408.00103"><img src="https://img.shields.io/badge/arXiv-2408.00103-b31b1b.svg"></a>
</div>
<br>
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
    <a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> &nbsp; &nbsp;
    <a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a> &nbsp; &nbsp;
    <a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a>
</div>
<br>
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
    <a href="https://nlp.uniroma1.it/"><img src="https://img.shields.io/badge/Sapienza NLP-802433.svg?logo="></a> &nbsp; &nbsp;
    <a href="https://babelscape.com/"><img src="https://img.shields.io/badge/Babelscape-215489.svg?logo="></a>
</div>
<br>

<div style="text-align: center; display: flex; flex-direction: column; align-items: center;">

<h2>
    Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
    <br>
    <span style="font-size: 0.9em;">
    A blazing fast and lightweight Information Extraction model for Entity Linking and Relation Extraction. 
    </span>
    <br>
    <span style="color: #919191; font-weight: 400; font-size: 0.8em;">
        <a href="https://riccardorlando.xyz/" style="color: #919191;" target="_blank">Riccardo Orlando</a>, 
        <a href="https://littlepea13.github.io/" style="color: #919191;" target="_blank">Pere-Lluís Huguet Cabot</a>, 
        <a href="https://edobobo.github.io/" style="color: #919191;" target="_blank">Edoardo Barba</a>, 
        and <a href="https://www.diag.uniroma1.it/navigli/" style="color: #919191;" target="_blank">Roberto Navigli</a> 
    </span>
<h2>
</div>
"""

INSTRUCTION = """
## Use it locally

Installation from PyPI

```bash
pip install relik
```

ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**.
It is composed of two main components: a **retriever** and a **reader**.
The retriever is responsible for retrieving relevant documents from a large collection of documents,
while the reader is responsible for extracting entities and relations from the retrieved documents.
ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline.

Here is an example of how to use ReLiK for Entity Linking:

```python
from relik import Relik
from relik.inference.data.objects import RelikOutput

relik = Relik.from_pretrained("sapienzanlp/relik-entity-linking-large")
relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")

# RelikOutput(
#     text="Michael Jordan was one of the best players in the NBA.",
#     tokens=['Michael', 'Jordan', 'was', 'one', 'of', 'the', 'best', 'players', 'in', 'the', 'NBA', '.'],
#     id=0,
#     spans=[
#         Span(start=0, end=14, label="Michael Jordan", text="Michael Jordan"),
#         Span(start=50, end=53, label="National Basketball Association", text="NBA"),
#     ],
#     triplets=[],
#     candidates=Candidates(
#         span=[
#             [
#                 [
#                     {"text": "Michael Jordan", "id": 4484083},
#                     {"text": "National Basketball Association", "id": 5209815},
#                     {"text": "Walter Jordan", "id": 2340190},
#                     {"text": "Jordan", "id": 3486773},
#                     {"text": "50 Greatest Players in NBA History", "id": 1742909},
#                     ...
#                 ]
#             ]
#         ]
#     ),
# )
```

and for Relation Extraction:

```python
from relik import Relik
from relik.inference.data.objects import RelikOutput

relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-large")
relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
```

For more information, please refer to the [source code](https://github.com/SapienzaNLP/relik/).
"""

class GoldenSillyRetriever(GoldenRetriever):
    def __init__(self, documents: List[str], *args, **kwargs):
        self.documents = DocumentStore([Document(doc) for doc in documents])
        self.document_index = BaseDocumentIndex(self.documents)
    def retrieve(self,
                text: Optional[Union[str, List[str]]] = None,
                k: int = 100,
                *args,
                **kwargs,
    ) -> List[List[RetrievedSample]]:
        if isinstance(text, str):
            text = [text]
        elif text is None:
            text = []
        return [
            [RetrievedSample(score=1.0, document=doc) for doc in self.documents[:k]]
            for _ in text
        ]
    def index(self):
        pass
    def eval(self):
        pass
    def save_pretrained(self):
        pass
    def to(self, device):
        pass

wikipedia_retriever = GoldenRetriever("relik-ie/encoder-e5-base-v2-wikipedia", device="cuda")
wikipedia_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-base-v2-wikipedia-index", index_precision="bf16", device="cuda")

wikidata_retriever = GoldenRetriever("relik-ie/encoder-e5-small-v2-wikipedia-relations", device="cuda")
wikidata_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-small-v2-wikipedia-relations-index", index_precision="bf16", device="cuda")

ner_type_retriever = GoldenSillyRetriever(
                documents=['media', 'disease', 'miscellaneous', 'event', 'person', 'location', 'time', 'celestial', 'organization', 'concept']
            )

relik_available_models = [
    "relik-ie/relik-cie-small",
    "relik-ie/relik-cie-xl",
    "sapienzanlp/relik-entity-linking-large",
    "relik-ie/relik-entity-linking-large-robust",
    "relik-ie/relik-relation-extraction-small",
    "relik-ie/relik-relation-extraction-large",
    "relik-ie/relik-relation-extraction-small-wikipedia-ner",
]

relik_models = {
    "sapienzanlp/relik-entity-linking-large": Relik.from_pretrained(
        "sapienzanlp/relik-entity-linking-large",
        device="cuda",
        index={
            TaskType.SPAN: wikipedia_index,
        },
        retriever={
            TaskType.SPAN:wikipedia_retriever,
        },
        reader_kwargs={"dataset_kwargs": {"use_nme": True}},
    ),
    "relik-ie/relik-cie-small": Relik.from_pretrained(
        "relik-ie/relik-cie-small",
        device="cuda",
        index={
            TaskType.SPAN: wikipedia_index,
            TaskType.TRIPLET: wikidata_index,
        },
        retriever={
            TaskType.SPAN: wikipedia_retriever,
            TaskType.TRIPLET: wikidata_retriever,
        },
        reader_kwargs={"dataset_kwargs": {"use_nme": True}},
    ),
    "relik-ie/relik-cie-xl": Relik.from_pretrained(
        "relik-ie/relik-cie-xl",
        device="cuda",
        index={
            TaskType.SPAN: wikipedia_index,
            TaskType.TRIPLET: wikidata_index,
        },
        retriever={
            TaskType.SPAN: wikipedia_retriever,
            TaskType.TRIPLET: wikidata_retriever,
        },
        reader_kwargs={"dataset_kwargs": {"use_nme": True}},
    ),
    "relik-ie/relik-relation-extraction-small-wikipedia-ner": Relik.from_pretrained(
        "relik-ie/relik-relation-extraction-small-wikipedia-ner",
        device="cuda",
        use_nme=True,
        retriever={
            TaskType.SPAN: ner_type_retriever,
            TaskType.TRIPLET: wikidata_retriever,
        },
        index={
            TaskType.SPAN: ner_type_retriever.document_index,
            TaskType.TRIPLET: wikidata_index,
        }
    ),
    "relik-ie/relik-relation-extraction-small": Relik.from_pretrained(
        "relik-ie/relik-relation-extraction-small",
        index={
            TaskType.TRIPLET:wikidata_index,
        },
        device="cuda",
        retriever={
            TaskType.TRIPLET: wikidata_retriever,
        },
    ),
    "relik-ie/relik-relation-extraction-large": Relik.from_pretrained(
        "relik-ie/relik-relation-extraction-large",
        index={
            TaskType.TRIPLET:wikidata_index,
        },
        device="cuda",
        retriever={
            TaskType.TRIPLET: wikidata_retriever,
        },
    ),
    "relik-ie/relik-entity-linking-large-robust": Relik.from_pretrained(
        "relik-ie/relik-entity-linking-large-robust",
        index={
            TaskType.SPAN: wikipedia_index,
        },
        device="cuda",
        retriever={
            TaskType.SPAN: wikipedia_retriever,
        },
        reader_kwargs={"dataset_kwargs": {"use_nme": True}},
    ),
}


def get_span_annotations(response, doc, ner=False):
    dict_ents = {}
    el_link_wrapper = (
        "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='https://en.wikipedia.org/wiki/{}' style='color: #414141'><i class='fa-brands fa-wikipedia-w fa-xs' style='color: #414141'></i> {}</a>"
    )

    spans = []
    for idx, span in enumerate(response.spans):
        spans.append(
            Span(
                doc,
                span.start,
                span.end,
                el_link_wrapper.format(
                    span.label.replace(" ", "_"), span.label
                ) if (span.label != "--NME--" and not ner) else span.label,
                # kb_id=span.label.replace(" ", "_")
            )
        )
        dict_ents[(span.start, span.end)] = (
            span.label + str(idx),
            doc[span.start : span.end].text,
            span.label,
            span.label.replace(" ", "_"),
        )
    colors = get_random_color(set([span.label_ for span in spans]))
    return spans, colors, dict_ents

def generate_graph(spans, response, colors, dict_ents, bgcolor="#111827", font_color="white", ner=False):
    g = Network(
        width="720px",
        height="600px",
        directed=True,
        notebook=False,
        bgcolor=bgcolor,
        font_color=font_color,
    )
    g.barnes_hut(
        gravity=-3000,
        central_gravity=0.3,
        spring_length=50,
        spring_strength=0.001,
        damping=0.09,
        overlap=0,
    )

    for ent in spans:
        # if not NME use title:
        if dict_ents[(ent.start, ent.end)][2] != "--NME--" and not ner:
            g.add_node(
                dict_ents[(ent.start, ent.end)][2],
                label=dict_ents[(ent.start, ent.end)][2],
                color=colors[ent.label_],
                title=dict_ents[(ent.start, ent.end)][2],
                size=15,
                labelHighlightBold=True,
            )
        else:
            g.add_node(
                ent.text,
                label=ent.text,
                color=colors[ent.label_],
                title=ent.text,
                size=15,
                labelHighlightBold=True,
            )
    seen_rels = set()
    for rel in response.triplets:
        if not ner:
            if dict_ents[(rel.subject.start, rel.subject.end)][2] == "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] == "--NME--":
                if (rel.subject.text, rel.object.text, rel.label) in seen_rels:
                    continue
            elif dict_ents[(rel.subject.start, rel.subject.end)][2] == "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--":
                if (rel.subject.text, dict_ents[(rel.object.start, rel.object.end)][2], rel.label) in seen_rels:
                    continue
            elif dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] == "--NME--":
                if (dict_ents[(rel.subject.start, rel.subject.end)][2], rel.object.text, rel.label) in seen_rels:
                    continue
            else:
                if (dict_ents[(rel.subject.start, rel.subject.end)][2], dict_ents[(rel.object.start, rel.object.end)][2], rel.label) in seen_rels:
                    continue

        g.add_edge(
            dict_ents[(rel.subject.start, rel.subject.end)][2] if dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and not ner else dict_ents[(rel.subject.start, rel.subject.end)][1],
            dict_ents[(rel.object.start, rel.object.end)][2] if dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--" and not ner else dict_ents[(rel.object.start, rel.object.end)][1],
            label=rel.label,
            title=rel.label,
        )
        if dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--":
            seen_rels.add((dict_ents[(rel.subject.start, rel.subject.end)][2], dict_ents[(rel.object.start, rel.object.end)][2], rel.label))
        elif dict_ents[(rel.subject.start, rel.subject.end)][2] != "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] == "--NME--":
            seen_rels.add((dict_ents[(rel.subject.start, rel.subject.end)][2], rel.object.text, rel.label))
        elif dict_ents[(rel.subject.start, rel.subject.end)][2] == "--NME--" and dict_ents[(rel.object.start, rel.object.end)][2] != "--NME--":
            seen_rels.add((rel.subject.text, dict_ents[(rel.object.start, rel.object.end)][2], rel.label))
        else:
            seen_rels.add((rel.subject.text, rel.object.text, rel.label))
    # g.show(filename, notebook=False)
    html = g.generate_html()
    # need to remove ' from HTML
    html = html.replace("'", '"')

    return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""

@spaces.GPU
def text_analysis(Text, Model, Relation_Threshold, Window_Size, Window_Stride):
    global loaded_model
    if Model is None:
        return "", ""
    # if loaded_model is None or loaded_model["key"] != Model:
    #     relik = Relik.from_pretrained(Model, index_precision="bf16")
    #     loaded_model = {"key": Model, "model": relik}
    # else:
    #     relik = loaded_model["model"]
    if Model not in relik_models:
        raise ValueError(f"Model {Model} not found.")
    relik = relik_models[Model]
    # spacy for span visualization
    nlp = spacy.blank("xx")
    annotated_text = relik(Text, annotation_type="word", num_workers=0, remove_nmes= False, relation_threshold = Relation_Threshold, window_size=Window_Size, window_stride=Window_Stride)
    doc = Doc(nlp.vocab, words=[token.text for token in annotated_text.tokens])
    spans, colors, dict_ents = get_span_annotations(response=annotated_text, doc=doc, ner="ner" in Model)
    doc.spans["sc"] = spans

    # build the EL display
    display_el = displacy.render(doc, style="span", options={"colors": colors})#, "kb_url_template": "https://en.wikipedia.org/wiki/{}"})
    display_el = display_el.replace("\n", " ")
    # heuristic, prevents split of annotation decorations
    display_el = display_el.replace(
        "border-radius: 0.35em;",
        "border-radius: 0.35em; white-space: nowrap;",
    )
    display_el = display_el.replace(
        "span style",
        "span id='el' style",
    )
    display_re = ""
    if annotated_text.triplets:
        # background_color should be the same as the background of the page
        display_re = generate_graph(spans, annotated_text, colors, dict_ents, ner="ner" in Model)
    return display_el, display_re


theme = theme = gr.themes.Base(
    primary_hue="rose",
    secondary_hue="rose",
    text_size="lg",
    # font=[gr.themes.GoogleFont("Montserrat"), "Arial", "sans-serif"],
)

css = """
h1 {
  text-align: center;
  display: block;
}
mark {
    color: black;
}
#el {
    white-space: nowrap;
}
"""

with gr.Blocks(fill_height=True, css=css, theme=theme) as demo:
    # check if demo is running in dark mode
    gr.Markdown(LOGO)
    gr.Markdown(DESCRIPTION)
    gr.Interface(
        text_analysis,
        [
            gr.Textbox(label="Input Text", placeholder="Enter sentence here..."),
            gr.Dropdown(
                relik_available_models,
                value=relik_available_models[0],
                label="Relik Model",
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.05,
                value=0.5,
                label="Relation Threshold",
                info="Minimum confidence for relation extraction (Only for RE and cIE)",
            ),
            gr.Slider(
                minimum=16,
                maximum=128,
                step=16,
                value=32,
                label="Window Size",
                info="Window size for the sliding window",
            ),
            gr.Slider(
                minimum=8,
                maximum=64,
                step=8,
                value=16,
                label="Window Stride",
                info="Window stride for the sliding window",
            ),
        ],
        [gr.HTML(label="Entities"), gr.HTML(label="Relations")],
        examples=[
            ["Avram Noam Chomsky  born December 7, 1928) is an American professor and public intellectual known for his work in linguistics, political activism, and social criticism. Sometimes called 'the father of modern linguistics', Chomsky is also a major figure in analytic philosophy and one of the founders of the field of cognitive science. He is a laureate professor of linguistics at the University of Arizona and an institute professor emeritus at the Massachusetts Institute of Technology (MIT). Among the most cited living authors, Chomsky has written more than 150 books on topics such as linguistics, war, and politics. In addition to his work in linguistics, since the 1960s Chomsky has been an influential voice on the American left as a consistent critic of U.S. foreign policy, contemporary capitalism, and corporate influence on political institutions and the media."],
            ["'Bella ciao' (Italian pronunciation: [ˈbɛlla ˈtʃaːo]; 'Goodbye beautiful') is an Italian song dedicated to the partisans of the Italian resistance, which fought against the occupying troops of Nazi Germany and the collaborationist Fascist forces during the liberation of Italy. It was based on a folk song of the late 19th century, sung by female workers of the paddy fields in Northern Italy (mondine) in protest against harsh working conditions. Versions of 'Bella ciao' continue to be sung worldwide as a hymn of resistance."],
        ],
        allow_flagging="never",
    )
    gr.Markdown("")
    gr.Markdown(INSTRUCTION)

if __name__ == "__main__":
    demo.launch()